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Abstract In many real-world principal-agent settings, the principal must design

incentives to both induce hard work and to encourage risky initiative instead of

safer projects. We provide conditions such that extreme outputs will be rewarded

more and middle outputs less than in the classic moral hazard setting, giving an

alternative explanation for option-like incentives. We exhibit the structure of opti-

mal contracts when these conditions are not satisfied. Faced by the need to induce

initiative, the principal will tend to ask less of the agent if effort is not very impor-

tant, but ask more if effort is important. Effectively, the principal goes big or goes

home.

KEYWORDS: Moral Hazard, Project Selection, First-Order Approach, Principal-

Agent Problem.

1. INTRODUCTION

In the classic moral hazard problem, the principal’s only problem is to induce the agent

to work hard. But, in many real world settings, the agent also chooses on what to work.

Assume that GM’s board has decided on an aggressive transition to electric vehicles. Hence,

they want two things from their CEO, Mary Barra. First, as is standard, they want her to

work very hard. But, they also want Barra to favor electric over traditional, and not all of

her choices of whether to do so are observable. For example, while the board can see the
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timing of plant transitions from traditional to electric vehicles, a moderate rate of transition

could reflect either that Barra was playing it safe, or that she was aggressively pursuing

the strategy, but that stochastic market or technological considerations hampered a faster

transition. Thus, the same set of rewards that guide her effort choice must also partly guide

her degree of initiative in pursuing electric. And, to the extent that taking more initiative

leads to riskier outcomes, GM needs to be aware that exposing Barra to risk, which is

effective at motivating effort, may disincentivize initiative.

Most academics have available “safe” projects that will lead with high probability to

publishable output. Our employers (and society), however, may prefer that we take on

projects that may turn out to be impossible, but will make a more substantive contribution

if successful: the university wants us to both show initiative in choosing innovative projects,

and then work very hard to make them succeed. And here again, the university can only

make a noisy estimate of whether our research agenda is “safe” or ambitious, while we

may know quite well. Hence there is a clear tension. Providing poor payoffs in the face of

low research output is one very effective way to disincentivize low effort. But “no output”

is also the modal outcome for many projects that push the frontiers. Punishing low output

thus incentivizes effort, but disincentivizes initiative.

The need to encourage initiative is not just relevant at the top of the firm, or for employees

for whom innovation is key. Consider a firm motivating a salesperson. Some clients are

highly probable to do some business with the firm, but of limited magnitude. Other clients

are more speculative, but have the potential to make large orders. If the type of client

pursued is visible to the salesperson but not to the firm, then the firm must use its reward

structure both to encourage the pursuit of the right client and to encourage serious effort

in doing so. Similar issues arise when an employee negotiating on behalf of the firm is

deciding whether to pursue an easy deal or push hard for a better one. Organizations benefit

from initiative at all levels.

In this paper, we consider a principal who needs to motivate both effort and initiative. We

model a lack of initiative as taking a “safe” action which leads to output which is relatively

unlikely to be either very high or very low. In contrast, taking intiative (declining the safe

action) places the agent in the classic moral hazard setting (Mirrlees (1975), Holmström

(1979)) where effort determines the distribution over outcomes on a risky project. We thus

have the need to encourage initiative while maintaining the full richness of the canonical
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moral hazard setting. As such, our model allows a nuanced understanding of how initiative

and effort interact.

We provide a comprehensive analysis of this problem and how it compares to the classic

moral-hazard problem. At a high level, there are two main economic insights. First, under

reasonable conditions, the optimal contract facing the initiative constraint will cross the

contract without the constraint twice, once from above and then once from below. Indeed,

in an important class, the need to induce initiative leads to a more convex compensation

schemes. Second, there is a tendency for the effort implemented to be pushed away from

middle levels with the new constraint. If output is not of very high value, the principal will

tend to induce lower effort (or indeed the safer project) facing the need to induce initiative,

but if output is of significant value, then the principal will induce higher effort given the

extra constraint.

The result that incentives tend to convexify when initiative is added to the model reflects

a simple trade-off. When initiative is taken, low outputs become more likely. So, low out-

puts, while bad news about effort, are good news about initiative. In the face of these mixed

messages, the principal does not punish low output as harshly as when initiative is not a

consideration. Similarly, medium outputs, while favorable news about effort, are less good

news about initiative, and so rewards are lower than before. Finally, high outcomes are

good news about both effort and initiative, and so are rewarded generously. This suggests

a reason why real-world incentive schemes, such as options-based contracts for CEOs and

the compensation of tenured academics, seem to be steep in the face of success but flatter

in the face of failure. Indeed, if the safe project is sufficiently appealing, then the optimal

contract may be non-monotone.1

The fact that the need to motivate initiative leads to contracts that punish failure less

harshly has precedents both in the literature (see below), and in the popular press. We add

significant nuance in two ways. First, we emphasize that the reason why the agent may

fail to show initiative is not just because he is afraid of failure, but also because middling

outcomes may be too well compensated in the contracts that naturally arise when only

moral hazard on effort is considered. The popular wisdom should be amended to state

1If the agent could destroy output, then there would be an additional monotonicity constraint on compensation,

a topic that, for considerations of length, we do not explore in this paper.
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that to encourage initiative, failure should not be punished too harshly, but neither should

mediocrity be too comfortable.

Second, we show that there is an important countervailing force to the property that

the contract when initiative is a consideration crosses the contract without this consider-

ation twice, first from above, and then from below. Encouraging initiative may indirectly

discourage or encourage effort, and the optimal contract must adjust accordingly. We show

examples where this overturns the result that low outputs are treated more generously when

initiative needs to be encouraged and also that high outputs are treated more generously.

In the face of this, we exhibit a sufficient condition for the intuitive crossing pattern.

The condition is economically interpretable and is satisfied in some very natural settings,

but fails in other natural ones. Then, we study a much more general setting. Despite its

generality, a remarkable amount of structure emerges. The two contracts now cross at most

three times. A range of middle outputs are still treated less generously and a range of

higher and lower outputs more generously. Hence if there are only two crossings, they

are of the expected pattern. When there is an extra crossing, its location is governed by

the interaction of encouraging initiative and encouraging effort. If encouraging initiative

discourages effort, then to restore incentives for effort, the principal may end up treating

very low outputs more harshly than before. If encouraging initiative encourages effort, then

very high outputs may be treated less generously than before.

The result that effort tends to be pushed away from the middle is driven by the fact

that in many settings, the cost penalty inherent in the initiative constraint is first increasing

and then decreasing in the induced effort. Some intuition for this is that at low efforts,

incentives are weak, and so there is not much cost in making sure that middle outcomes

are not rewarded too well. But, rewarding middling outputs can be a very effective way to

encourage moderate effort, and hence the initiative constraint binds more harshly. Finally,

generously rewarding high outputs encourages high effort without also making the safer

project attractive. Effectively, low effort levels remove the need to provide strong incentives

while high effort levels make it easier for the principal to distinguish whether initiative was

taken. But, because the cost of middle efforts rise the most, efforts towards the extremes

will be favored in the face of the new constraint. The principal will tend to “go big, or go

home” in the face of the need to induce initiative.
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An important case is when the agent’s utility of income is square-root. All the relevant

objects then have closed-form expressions in terms of three basic objects that depend only

on the information structure of the problem. The first reflects the informativeness of output

about effort, the second the informativeness of output about initiative, and the third the

degree to which signals that are good news about effort covary with signals that are good

news about initiative. The square-root case is a rich source of examples and insights. For

example, it provides a clean comparison of the relevant multipliers, and a closed form

expression for the cost penalty and hence effort distortion inherent in the new constraint.

The square-root case turns out to be of much deeper importance. For general utility

functions, the equations that implicitly define the optimal contract are intractable. But, for

a broad class of utility functions, when the outside option of the agent is large, the cost-

minimizing contract for any given effort converges to the square-root form.2 Thus, the

insights and intuitions from the square-root case are valid much more generally.

Our detailed results about the form of contracts and effort distortions are unlocked by

our use of the first-order approach which relaxes the full incentive constraint on effort to

the local necessary condition. This is valid only if a solution to the relaxed problem exists,

and is feasible in the full problem.

To analyze existence, we begin by noting that in the square-root case, a closed form solu-

tion exists when the outside option is large enough so that the constraint that payments are

non-negative does not bind. We then leverage our convergence result and tools from Kadan,

Reny, and Swinkels (2017) to show that a solution to the relaxed problem exists with a large

outside option for the same class of utility functions as before. Since optimal contracts can

be non-mononote, no previous result justifying the first-order approach applies here. We

provide permissive new results for our setting.

Our paper is related to a large literature in economics, finance, and accounting on incen-

tive provision for risk taking and project selection. Indeed, the seminal paper by Grossman

and Hart (1983) on the standard principal-agent problem with moral hazard allows for mul-

tidimensional actions. Thus, for example, one could think about one dimension as effort and

the another one as selecting projects of different risk and return. Indeed they conjecture (see

2Even under pure moral hazard, we advance Chade and Swinkels (2020) by characterizing the limit contract.



6

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

pp.28–29), that in a setting similar to ours low outputs might be rewarded to induce what

we refer to as initiative. We make precise these conjectures and explore their implications.3

The paper is also closely related to the literature on incentive provision for innovation.

Central to this literature is Manso (2011), which analyzes a two-period principal-agent

problem where the agent controls a two-armed bandit process, and can choose whether to

exert effort on a known arm or explore the other arm. If the agent is risk neutral and explo-

ration is what he calls “radical” then the optimal contract exhibits tolerance for early failure

in the sense that the agent’s wage for failure in the first period is higher than that for suc-

cess. It also rewards repeated success (which is evidence of risk taking) more highly than

with pure moral hazard. Ederer and Manso (2013) and Azoulay, Zivin, Joshua, and Manso

(2011) provide experimental and empirical evidence for the tolerance-for-failure property.4

Our canonical static principal-agent setting with a risk-averse agent and a continuum of ac-

tions and output levels allows a substantially more nuanced examination of how incentives

change when initiative is an issue.

Another related paper is Hirshleifer and Suh (1992), who also extend the principal-agent

problem with moral hazard to allow for project selection. Their setup allows for a richer

set of projects than the binary case we consider. Their most general results are for the

case where there is no risk-return trade-off (projects only differ in their variance) and the

distribution of output is normal (an assumption that is technically problematic). When a

risk-return trade-off is present, they illustrate via examples that there can be downward

distortions in both project selection and effort. Demski and Dye (1999) allows the agent to

have private information about the mean and variance of the projects. Under the restriction

3There is also a strand of literature in which the agent costly acquires information about a risky project before

deciding between that project and a safe alternative. The seminal paper is Lambert (1986), which shows that with-

out communication the principal distorts project selection, and the distortion can be downward or upwards. Mal-

comson (2009) analyzes a more general setting and sheds further light on the distortions induced by information

acquisition and project selection. Other papers in this literature are Barron and Waddell (2003), which combines

theory and estimation of a model with project selection with information acquisition, and Chade and Kovrijnykh

(2016), which analyzes a dynamic version and shows that sometimes the principal rewards “bad news.” Our paper

abstracts from information acquisition, and thus is not closely related to these papers.
4Another contribution is Hellmann and Thiele (2011), who analyze optimal contracts to innovate using a multi-

task model with moral hazard.
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to compensation schemes that have a quadratic functional form, they find that at the optimal

contract the agent underreports the mean of the project chosen. Our setting abstracts from

private information, but imposes no restrictions on the set of contracts.5

Holmström and Costa (1986) shows that in the presence of career concerns the agent has

incentives to take less risk than the principal desires.6 Under some conditions, the optimal

contract protects the agent against low outcomes, thus having an “option-like” shape. We

derive a related insight without career concerns.7

The organization of the paper is as follows. Section 2 lays out the model. Section 3

presents a simple example to illustrate the two main insights. Section 4 derives the opti-

mality conditions that any solution to the problem must satisfy, and illustrates them with

the case in which the agent’s utility of income is the square-root function. Section 5 pro-

vides a comprehensive analysis of the shape of optimal compensation schemes. Section 6

examines the effort distortions induced by initiative, and illustrates that the distortions can

be large. Section 7 derives mild conditions on the agent’s utility of income under which

solutions converge to the square-root case as the outside option rises. Section 8 discusses

existence and when the solution to the relaxed problem is a solution to the full problem.

Section 9 concludes. Appendix A contains central omitted proofs and calculations. Online

Appendix B contains ancillary material plus the formal analysis of existence of a solution.

2. MODEL

The model is a straightforward extension of the standard principal-agent problem with

moral hazard. A principal (she) seeks to hire an agent (he). If the agent accepts, then he

makes two choices. First, he faces a choice of projects, where we will term one “safe” and

the other “risky,” a choice of terminology that we will justify shortly. If he chooses the safe

5Other papers with project selection and moral hazard are Sung (1995), who analyzes a related problem un-

der linear contracts, and Dittmann, Yu, and Zhang (2017), which calibrates a principal-agent problem and finds

empirical support for protecting executives from bad losses and for convex contracts.
6For a recent contribution with career concerns, see Laux (2015), who derives a CEO’s optimal compensation

scheme when pay is restricted to a combination of equity and stock options.
7In our setup, the agent is tempted to take less risk than the principal wants. There is also a complementary

literature where the opposite is true: contracts are designed to temper the agent’s desire to take risk. See, for

example, Georgiadis, Barron, and Swinkels (2020) and Biais and Casamatta (1999) and the references therein.
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project, which we write as as, then effort does not matter, and output is given by a continu-

ous differentiable density fs on some interval of the positive reals. If he chooses the risky

project, which is what we mean by taking initiative, then effort does matter, with f(·|a)

being the density on output x ∈ [0, x̄] given effort level a ∈ [0, ā], where x̄ and ā are finite,

with f > 0 and twice-continuously differentiable.8 We take f to have the usual structure

of the moral hazard problem. In particular, l(x|a)≡ fa(x|a)
f(x|a) has the (strict) monotone likeli-

hood ratio property, MLRP, which is that l(·|a) is strictly increasing for each a. We assume

that the support of f(·|a) does not depend on a, and that the support of fs is a subset of

the support of f(·|a).9 This rules out that certain outcomes are sure evidence that the agent

either chose the safe project or chose a non-desired effort level.

To justify our “safe” versus “risky” terminology for the projects, on the support of f(·|a),

let ls(x|a)≡ fs(x)
f(x|a) be the likelihood ratio on the safe versus the risky project given effort

a and outcome x. We assume that for each a, ls(·|a) is strictly single peaked, with ls(·|a)

strictly less than one at the extremes of the support of f(·|a). This implies that for each a,

f(·|a)−fs(·) is first strictly positive, then strictly negative, and then again strictly positive.

So, when the agent takes initiative, there is less weight on intermediate outcomes and more

weight on extreme outcomes than when the agent takes the safe project. To keep things

interesting, we assume that for a sufficiently large, E[x|a]> E[x|as].
The agent’s utility is additively separable in income and effort, where an agent with in-

come w who exerts effort a has utility u(w) − c(a). We assume u is strictly increasing,

strictly concave and twice differentiable, and that c is increasing, convex and twice differ-

entiable with c(0) = ca(0) = 0. Taking the safe project incurs 0 effort disutility.

The principal can see only output, observing neither whether initiative was taken nor the

choice of effort. A contract thus specifies a wage for each output x. As is standard, we will

work instead with the utility from income that the agent receives, letting v(x) be the utility

from income following output x. Let ϕ= u−1 give the cost to the principal of inducing any

given utility, so that the principal’s outlay at outcome x is ϕ(v(x)).

8Where convenient in examples, we relax various of these assumptions.
9When we intend a relationship to be strict, we say so. Throughout, we discard limits of integration and argu-

ments of functions if they are obvious. The symbol x=s y means that x and y have strictly the same sign.
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Conditional on initiative, the principal values the effort of the agent according to some

increasing concave function B. An example we use below is B(a) = α+ βE[x|a], so that

β is the market price of output, and α reflects the fixed costs or benefits to the principal of

employing the agent. The net payoff to the principal when effort is a and the contract is v is

B(a)−E[ϕ(v(x))|a]. We also let B(as) be the value the principal places on the safe action

as, where once again, B(as) = α + βE[x|as] will be a common example. As usual, we

analyze the principal’s problem in two steps: first minimizing the cost of inducing a given

action, and then using the resulting cost function to find the profit-maximizing action.

Note that the safe project can be induced by paying ū at all outcomes, and hence costs

ϕ(ū). Turning to the interesting case, fix a, and consider the problem of inducing the agent

to take initiative and then choose effort level a. The cost minimization problem is

min
v

∫
ϕ(v(x))f(x|a)dx (PFull)

s.t.

∫
v(x)f(x|a)dx− ū− c(a)≥ 0,

a ∈ arg max
a′

∫
v(x)f(x|a′)dx− c(a′), and∫

v(x)f(x|a)− c(a)−
∫
v(x)fs(x)dx≥ 0.

The first constraint is the participation constraint that the agent prefers to accept the contract

than to take his outside option. The second is the incentive-compatibility constraint that

conditional on taking initiative, the agent prefers action a to any other action. These two

constraints are the usual ones in the standard principal-agent problem with moral hazard.

The final constraint reflects that the agent is better off to take initiative than the safe project.

For much of our analysis, we make two simplifications to this program. For convenience,

we assume that IR binds at the optimum. This is automatic if u is unbounded below, and in

cases like u(w) =
√
w if the outside option is sufficiently large.10 More substantively, we

only check the first-order condition on the agent’s effort choice rather than the full set of

10If u is unbounded below and IR is slack, then removing a small constant from v leaves the incentive and

project-selection constraints satisfied and saves the principal money.
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incentive constraints. Doing so gives us a tight characterization of optimal contracts. Later

we provide conditions under which the first-order approach (FOA) is valid in our setting.11

We thus consider the relaxed problem

min
v

∫
ϕ(v(x))f(x|a)dx (PPS)

s.t.

∫
v(x)f(x|a)dx− ū− c(a) = 0, (IR)∫

v(x)fa(x|a)dx− ca(a) = 0, and (IC)

ū−
∫
v(x)fs(x)dx≥ 0, (PS)

where the participation constraint IR is now an equality, the incentive-compatibility con-

straint IC is relaxed to local optimality, and the initiative (project-selection) constraint PS

is simplified using IR. Let CPS(a) be the value of this program. If one discards the con-

straint PS, one has the standard relaxed moral hazard problem (Holmström (1979), Mirrlees

(1975)). Let PMH be this problem, with value CMH(a).

We consider two settings. In the first, which with some abuse of notation we refer to as

PS, initiative is unobservable. The principal chooses a ∈ [0, ā] to maximize B(·)−CPS(·),

and then induces initiative if and only if B(a)− CPS(a)≥ B(as)− ϕ(ū). In the second,

which we refer to as MH, initiative is observable and contractible: the principal can either

insist on as or forbid it. Hence the principal solves the same problem but withCMH playing

the role of CPS .

3. A SIMPLE EXAMPLE

Before diving into the formal analysis, let us see the main economic forces at play in

a simplified example. We focus on two main economic impacts of the need to motivate

initiative. First, for any given effort, high and low outputs are rewarded more generously,

but middle outputs less generously. Second, effort choices will often be distorted away from

“middle” effort levels in PS compared to the observable initiative benchmark MH, either

towards the safe project or towards a higher one. The principal goes big or goes home.

11We also address existence of an optimum.
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EXAMPLE 1: Let u(w) =
√

2w. There are four actions a1, a2, a3, and as and three

outputs, x1, x2, and x3. The agent plays it safe with as or exerts initiative with ai, i= 1,2,3.

The action as yields x2 with probability one. If the agent exerts initiative, the probability

distribution of output is as follows:

x1 x2 x3

a1 3/4 1/6 1/12

a2 1/3 1/3 1/3

a3 0 0 1

MLRP holds across a1, a2, and a3, but as is not ranked. The middle output x2 becomes

more likely as one moves from a1 to a2 but less likely as one moves from a2 to a3. Thus,

mediocre performance is a positive signal that the agent exerted medium versus low effort,

but a negative signal that the agent exerted high versus medium effort.12 The disutility of

effort is ai for i= 1,2,3, and 0 for as. We take a1 = 0, a2 = 1, and vary a3. Similarly, we

take x1 = 0, x2 = 1, and vary x3. The agent’s reservation utility is ū= 1.

As described in Section 2, in both MH and PS, a1, a2, and a3 are unobservable. In MH

the principal faces a pure moral hazard problem over a1, a2, and a3, but can simply require

or forbid the agent to take as. In PS the principal also cannot observe whether the agent

took action as. We begin with the optimal contracts that implement each action in each

informational setting. Either as or a1 is optimally implemented in either MH or PS by

setting utility to ū at all outputs. Implementing a3 similarly involves setting utility to 0 at

x1 or x2 and to ū+ a3 at x3.

Let us turn to a2 in MH, and focus on values of a3 where it is the deviation to a1 that

binds rather than the deviation to a3. The optimal contract is (see Online Appendix B.1)

vMH
1
∼= 0.42, vMH

2
∼= 2.63, and vMH

3
∼= 2.95,

where vMH
i is the utility of income following outcome xi. This contract has cost 2.63.

Now, consider implementing a2 in PS, and continue to focus on values of a3 where only

the downward deviation binds. Unlike in MH, no more than ū = 1 can be given at x2,

12This example is easily modified so that a3 sometimes generates a worse outcome than as, consistent with

our interpretation of as as the agent playing it safe.
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𝑎3 in both

𝑎2 in both

𝑎2 in MH

𝑎𝑠 in PS 𝑎2in MH

𝑎3 in PS 

𝑥3

𝑎3

𝑎𝑠 in both

1
2

Figure 1.: Distortions in Effort. The figure depicts the regions in which the different actions

are optimal under problem PS and under problem MH. In Region 1, effort is distorted

upwards from a2 to a3. In Region 2, effort is distorted from a2 to as.

otherwise the agent will switch to as. Instead, rewards above ū must be concentrated solely

on x3, which is good news about both effort and initiative. Because these rewards occur

less often, they must in utility terms be larger, and because the agent is risk averse, this is

more expensive to the principal. Indeed, the optimal contract is now

vPS1
∼= 0.63, vPS2 = 1, and vPS3

∼= 4.38

at a cost of 3.42. Compared to MH, the optimal way to induce initiative and effort in PS

involves lower payments at middle outcomes, and higher payments at low and high out-

comes. A major topic of this paper is to understand when this pattern emerges.

Because a2 becomes more expensive to implement while the other actions do not, there

will be a tendency to switch away from a2 in PS compared to MH. Figure 1 compares the

optimal effort levels implemented in these problems as a function of x3 and a3.13 In many

cases, the principal throws her hands up and now implements as despite its lower gross

returns. But, interestingly, in other cases, the principal replaces a2 by the higher effort a3.

13The principal is indifferent between as and a2 in MH along the pink line and between a2 and a3 along the

red line. She is indifferent between as and a3 along the green line in either problem. She is indifferent between

as and a2 in PS along the purple line and between a2 and a3 along the blue line.
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The cost of a2 rose in PS because the frequently arising signal x2 is good news about

effort but bad news about initiative, and so the signal is “conflicted.” No such conflict

arises following a3. Another of our goals is to understand when higher efforts lead to less

conflicted information, and hence an impetus towards implementing higher effort in PS.

4. SOLVING THE OPTIMIZATION PROBLEMS

We now analyze the general model. Our task is to understand the conditions under which

the two main economic insights illustrated by the example are robust. Problem PFull is

general but does not allow us to say much about either optimal compensation or the result-

ing cost to the principal. Thus we move to PMH and PPS , where the first-order approach

allows a tractable analysis.

Let λ ≥ 0, µ, and η ≥ 0 be the Lagrange multipliers associated with the participation,

incentive, and initiative constraints in PPS . Then the solution is pinned down by

ϕ′(v(·)) = λ+ µl(·|a)− ηls(·|a), (1)

for almost all x, which differs in structure from the optimality condition in PMH by the

presence of the last term.14 Below, we tackle whether solutions to these problems exist and

are feasible in the full problem, but for now we assume both are true.

Denote the solution to PPS by vPS(·, a, ū), with multipliers λPS(a, ū), µPS(a, ū), and

ηPS(a, ū), and the value of the problem by CPS(a, ū). The corresponding solution and

value in PMH are vMH , λMH , µMH , and CMH . If vMH satisfies constraint PS, then it

solves PPS , and ηPS(a, ū) = 0.

4.1. The Square-Root Utility Case

When the agent’s utility for income is u(w) =
√

2w, then vMH and vPS and the asso-

ciated multipliers have particularly transparent and tractable forms. This will allow a more

nuanced examination of the crossing properties of vMH and vPS , and will be a continuing

source of examples and insight as we move forward. This case is also foundational for our

understanding of the case with a large outside option in Section 7.

14The result is exactly what one would expect from Lagrangian methods (for example, from a careful applica-

tion of Theorem 1 and problem 7 in Luenberger (1969) Chapter 8).
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Under square-root utility, the constraints are linear in the multipliers, which simplifies

the problem. It is well-known that for given a the multipliers characterizing vMH are

λMH = ū+ c and µMH =
ca
Ia
, (2)

where Ia ≡
∫
l2f is the Fisher Information of x about a. To understand vPS , we need two

further information-theoretic objects. The first is σ ≡
∫
llsf , the covariance of ls and l. The

second is Is ≡
∫

(ls)2 f , the information in x about whether as was chosen or a.

When PS binds, vPS is characterized by

λPS = λMH + ηPS , µPS = µMH +
ηPSσ

Ia
, and ηPS =

cIa + caσ

(Is − 1)Ia − σ2 , (3)

where (Is−1)Ia−σ2 > 0 because it is a particular variance (see Lemmas 2–3 in Appendix

A.1).15 The form of ηPS has intuitive content. The numerator is proportional to the amount

by which constraint PS is violated at vMH . The denominator measures how easily one can

adjust incentives independently of the attractiveness of the safe action.16 Unambiguously,

λPS > λMH when PS bites and thus ηPS is strictly positive. The sign of µPS − µMH is

the same as the sign of σ, which is a primitive. For some intuition about this result, note

that when one adds the term −ηPSls to vMH then outputs where ls is high are reduced

compared to outputs where ls is low. If σ > 0, then this lowers incentives for effort, and so

µPS must rise to reestablish IC. Conversely if σ < 0 then µPS must fall to reestablish IC.

Appendix A.1 shows conditions for σ negative, a case that will be of special interest.

5. COMPARING COMPENSATION SCHEMES

Let us now turn to the relative shapes of vMH and vPS . Say that vPS is higher-lower-

higher (HLH) if for given a, vPS − vMH crosses zero exactly twice, and is first strictly

positive, then strictly negative, and then strictly positive. In our leading example, vPS is

HLH. Thus, vPS is more lenient towards low outputs, less tolerant of mediocre outputs

and more rewarding of excellent outputs than is vMH . Given that the safe action creates

15Note that ū does not enter into µPS or ηPS , and enters additively into λPS , and so since ls and l are

bounded, the contract vPS is positive for all a for ū sufficiently large, and similarly for vMH .
16The denominator measures how far the equations that pin down the multipliers are from being colinear.
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outputs that are concentrated towards the middle, this seems the intuitive result of needing

to encourage initiative while retaining incentives for effort. Indeed, the first part of this

pattern, that when the principal wants the agent to engage in a risky project they must

be tolerant of failure is long accepted in the field, with a leading reference being Manso

(2011), and a large literature following.

In this section, we do three things. First, we present an economically natural condition

on the statistical structure of the problem under which HLH in fact holds. Second, we show

why some such condition is needed for such a result, provide some simple examples where

HLH fails, and provide intuition for the countervailing force that has been ignored by the

literature to date. Finally, we explore a substantially more general class of information

structures. In this class we show that there are at most three crossing. If there are two, then

HLH holds. When a third crossing appears, then depending on the primitives, we have that

vPS is either LHLH or HLHL (in the obvious notation) and so punishes either very low

outputs or very high outputs compared to vMH . In the first case, we have invalidated the

“tolerance for failure” result that is common in the literature and seems so intuitive. In

the second case, we invalidate the equally intuitive “exceptional rewards for exceptional

performance” result.

We begin with a preliminary result about the crossing properties of vPS and vMH .

LEMMA 1—At Least Two Crossings: For each a and ū where η > 0, vPS and vMH

cross at least twice.

The proof is in Appendix A.2, but the idea is very simple. If the contracts do not cross

at all, then the higher one provides strictly more utility to the agent than the lower one,

contradicting that both satisfy IR with equality. And, if they cross only once, then the one

that crosses from below provides strictly stronger incentives for effort, contradicting that

they both satisfy IC.

5.1. Optimality of HLH Contracts

The intuition that vPS is HLH is in fact correct in many settings. The following theorem

shows that one sufficient condition is that if one rescales output such that lx(·|a) = 1, then

ls is strictly concave. This is automatic if ls is concave and l is convex. But, in the more
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usual case where l is concave, it is a statement that ls is more concave than l. See Appendix

A.2 for details, an alternative formulation, and a class of examples.

THEOREM 1—Primitives for HLH: Fix a 6= as where η > 0, and assume that ls(l−1(·|a)|a)

is strictly concave. Then vPS is HLH.

The structure that low outputs are punished less harshly than without project selection,

middle outputs are rewarded less generously, and high outputs are rewarded even more gen-

erously, resonates with real-world phenomena (see Manso (2011) for a related discussion).

Harkening back to the examples in the introduction, CEOs often have generous severance

packages, options that are worth little under mediocre firm performance, and what is often

thought of as excessive compensation when the firm thrives. The generous severance pack-

age is not what the standard moral hazard problem would predict. Nor under reasonable

assumptions on the likelihood ratio would one expect such extreme rewards for success.

But, it is this pattern of compensation that is most effective when the CEO needs to be

motivated to both work hard and pursue strategies that have considerable upside poten-

tial but might fail spectacularly. Similarly, the compensation of tenured academics involves

considerable downside protection and large rewards for exceptional impact.

To see the proof, observe that l is a strictly increasing function of x and so vPS − vMH

has the same sign as ϕ′
(
vPS

)
− ϕ′

(
vMH

)
and hence when l(x|a) = τ the same sign as

D(τ)≡ λPS − λMH + (µPS − µMH)τ

η
− ls(l−1(τ)).

This is strictly convex under the premise that ls(l−1) is strictly concave, and so can only

cross zero twice, first from above and then from below. But then by Lemma 1, vPS is HLH.

When utility is square-root we can sharpen this result. In this case v and ϕ′ coincide,

and so under the premise of Theorem 1, vPS − vMH is strictly convex. Thus vPS equals

vMH plus a convex function. This convexification can be very strong; Appendix A.2 shows

a well-behaved class of examples in which vPS is higher at low than at middle outputs.

5.2. Beyond Two Crossings

The argument proving Theorem 1 suggests that if ls(l−1) changes from concave to con-

vex multiple times, then D can cross zero multiple times as well. And, there are many
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natural examples where the rescaled ls is not concave. Concavity fails whenever fs has

less than full support, which is entirely plausible, as the whole point of playing it safe is

to avoid bad outcomes at the cost of also giving up on good ones. Concavity also fails if

the rescaled ls looks like a truncated normal distribution, or is decreasing and convex on its

support. Because of this, it is very easy to build examples where HLH fails. Here are two.

EXAMPLE 2—Punishing Failure: For given τ ∈ (0,1), let f = 1 − τ − a on [0,1/8],

f = 1 + τ − a on (1/8,1/4], f = 1 + a/3 on (1/4,1], and fs = 8 on [3/8,1/2], with

a ∈ (0,1 − τ) and u =
√

2w. This is the limit of examples in which f is continuous, l is

strictly increasing, and the rescaled ls is strictly concave on its support.17 Appendix A.2

verifies that vPS − vMH is LHLH.

Example 2 is particularly troubling, because it contradicts the received wisdom that en-

couraging risk involves being gentler in the face of failure. Here, very low outputs (those

below 1/8) are punished more harshly in PS than in MH. The core of this example is that

because ls is strictly positive only where l is strictly positive, encouraging initiative by set-

ting η strictly positive discourages effort. Because of this, incentives at places where they

do not encourage the safe project must be adjusted to become stronger via a larger µ, and

in this example the effect is strong enough at outcomes below 1/8 so as to violate HLH.

EXAMPLE 3—Punishing Success: Let f(x|a) = e−x/a/a for x ∈ [0,∞) and a ∈ [0,∞).

If chooses as, then output is distributed according to fs(x) = e−(x−1) on [1,∞). Let u =
√

2w. Then, as Appendix A.2 verifies, for all relevant effort levels, vPS − vMH is HLHL,

and so very high outputs are less generously rewarded than in vMH .

Example 3 contradicts the intuition that encouraging risk involves especially high re-

wards in the case of spectacular success. Here, when the principal encourages initiative by

setting η positive, she also strengthens the agent’s incentives to take effort. To restore IC, µ

falls, and the the principal reduces compensation at high outputs.

It is tempting at this point to conclude that there is no clear relationship between vPS

and vHM . But, while the proof of Theorem 1 provides a recipe book for building examples

with any number of crossings, the situation is in fact much more hopeful. In what follows,

17See Online Appendix B.2 for details.
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we will exhibit mild primitives under which (i) there are at most three crossings, (ii) when

there are three crossings, whether LHLH or HLHL holds depends in an intuitive way on

whether addressing the project selection constraint makes satisfying IC harder or easier,

and (iii) when there are two crossings, HLH continues to hold.

Say that ls is semibellshaped (SBS) if when output is rescaled so that l is linear, ls never

changes from concave to convex before its peak, never changes from convex to concave

after its peak and is never linear on the support of fs. Formally, fix and suppress a, let

[x`, xh] be the support of fs and let x̃ be the maximizer of ls. Then, ls is SBS if there is

x` ≤ x1 ≤ x̃≤ x2 ≤ xh such that ls(l−1(·)) is strictly concave on [l(x1), l(x2)], is otherwise

convex, and is strictly convex on [l(x`), l(xh)]\[l(x1), l(x2)]. See Figure 2 for examples and

a counterexample, and recall that Appendix A.2 provides an alternative formulation.

THEOREM 2—SBS Implies At Most Three Crossings: If ls is SBS, then vPS − vMH

changes sign at most three times. If there are three crossings, then vPS is LHLH if µPS >

µMH and HLHL if µPS < µMH .

When µPS > µMH then addressing project selection makes it harder at the margin to

provide incentives for effort. At an intuitive level, this will be true if outputs that are likely

under the safe project become more likely as effort is increased. But, when µ is raised,

rewards at low outcomes are pushed down, and, as Example 2 shows, this effect can be

strong enough to cause very low outputs to be punished relative to vMH . But, vPS is HLH

after this. Thus, the traditional wisdom of tolerating failure is overturned, but in a disci-

plined manner. Similarly, when µPS < µMH , then addressing project selection relaxes IC.

To restore IC, some very high outcomes may be rewarded less generously than before. As

mentioned, in the square-root case, these two cases are pinned down by the sign of σ.

Our intuition is that for academics, the sort of work that results from playing it safe is

also quite common when one takes initiative and works hard but happens to have limited

success. Hence, at an intuitive level, encouraging initiative, which involves lower rewards

for middling publications, discourages effort. So, if the reward structure of academics is not

HLH, it will be LHLH, and truly miserable output will be punished. An example is summer

money that is contingent on presenting a plausible research agenda, where the inability to

do this basic task corresponds to a very low output.
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(a) (b)

(c) (d)

Figure 2.: SBS Examples and a Counterexample. Some examples of ls(l−1), in green,

and of
(
(λPS − λMH + (µPS − µMH)τ

)
/η, in purple, as functions of τ . In (a), fs has

full support and so SBS is satisfied despite fs(x`)> 0. The green line is first convex, then

concave until past the peak, and then convex again. Where the purple line is above (below)

the green line, vPS − vHM is positive (negative). In this example, the purple line slopes

down (µPS −µMH < 0), and vPS is HLHL. Example (b) satisfies SBS, being convex up to

the first jump, strictly concave between the jump points, and convex from the second jump

point on. Because the purple line slopes up (µPS − µMH > 0), the pattern is LHLH. In (c)

SBS is also satisfied, but the purple line happens to be high enough that the pattern is HLH.

Example (d) violates SBS (there is no way to choose the requisite x2), and the purple line

shows an example where the pattern is HLHLHL.

The proof in Appendix A.2 establishes what is evident from the figure. When ls is SBS,

no configuration of the purple line can cross the green line more than thrice, where if the

purple line is upward sloping and there are three crossings, then as in panel (b), the ordering

is LHLH, while if it is downward sloping as in panel (a), then the ordering is HLHL.

While the theorem allows for as many as three crossings, the case of two crossings re-

mains possible. The next result shows that under a mild condition HLH holds whenever

this is so. The condition says that while ls(l−1) need not be convex, it does lie above the

average of its endpoints. This is satisfied trivially when fs is zero at its endpoints.18

18It fails if ls(l−1) is strictly positive at one endpoint, but has both slope and value zero at its other endpoint.
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PROPOSITION 1—SBS Plus Two Crossings Implies HLH: Assume that ls(l−1(·)) lies

above the line ls connecting (l(0), ls(0)) to (l(x̄), ls(x̄)), and somewhere strictly. If SBS

holds but vPS − vMH nonetheless crosses zero only twice, then vPS is HLH.

The idea is that under the premise if vPS − vMH is negative at both ends, then it is

negative everywhere, violating Lemma 1. But then, under SBS, if there are only two cross-

ings, HLH must hold. An open question of economic interest is to understand primitives

distinguishing the two and three crossing cases.

6. EFFORT AND INITIATIVE: DISTORTIONS

Besides the comparison of the shapes of the compensation schemes, we would also like

to shed light on the effort distortions that can be traced to the need to induce initiative. We

stress that signing distortions in effort is notoriously difficult in moral hazard problems.

To see how the need the initiative problem interacts with the importance of effort to

the principal, consider a setting where the benefit of effort to the principal is indexed by

τ ∈ [0,∞). In particular, let B(a, τ) = α(τ) + β(τ)E[x|a], where α is increasing in τ and

β is strictly increasing in τ , with β(0) = 0 and limτ→∞ β(τ) =∞. We will compare the

optimal actions for each τ in problems MH and PS. Let aMH(τ) and aPS(τ) be the optimal

efforts to induce, conditional on not inducing as, in problems MH and PS respectively.19

Define ∆(a) ≡ CPS(a) − CMH(a) as the cost penalty that is imposed from the extra

constraint PS. In the square-root utility case (see Appendix A.3)

∆ =
1

2

(
c+ ca

σ

Ia

)2

Is − 1− σ2

Ia

, (4)

which depends on the information theoretic objects of the problem and the disutility of

effort and its derivative. For some intuition, recall from the discussion of ηPS that the

expression in the numerator reflects the amount by which PS is violated by vMH , and the

19Because B is strictly supermodular, aMH and aPS are single-valued almost everywhere, so we will treat

them as functions, breaking ties in favor of, for example, the largest optimal action for given τ .
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Figure 3.: Cost Penalty. The cost penalty is decreasing in a for all relevant effort levels.

denominator reflects the amount by which the compensation scheme must be distorted from

vMH to reestablish PS.20

Now, note that in our discrete example in Section 3, ∆ is single-peaked, first increasing

at low effort levels, and then decreasing. In examples, we consistently arrive at a ∆ which

is strictly single-peaked over the relevant range of effort levels. Here is one such example.

EXAMPLE 4—Cost Penalty in Example 3: Let c = a2. Then, Appendix A.3 shows that

for a≤ 2, action as dominates a, while for a≥ 4, ∆ = 0. In between, (4) reduces to

∆ =
(a(4− a))2

a2

2a− 1
e
1
a − 1− (2− a)2

a2

,

which (see Figure 3) is strictly decreasing in a and hence strictly single-peaked.21

Since single-peakedness of ∆ is our common finding in examples, it is worth exploring

what happens to effort under PS versus MH when ∆ is strictly single-peaked.22 Our next

20Online Appendix B.3 shows that ∆ decreases in Is and increases in σ. When σ is positive, ∆ decreases in

Ia while if σ is negative, we have conflicting forces.
21In this example, the magnitude of ∆ is quite small and effort is either distorted upwards or to as. Appendix

A.3 provides a (carefully constructed) example where ∆ is large and effort distortions are large in both directions.
22Primitives to guarantee single-peakedness of ∆ would be desirable, but are complicated, because even in the

square-root case, it is hard to disentangle the behavior of the information-theoretic objects.
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theorem answers this question. Recall that τ indexes the value of effort to the principal.

Note that for any τ where the principal induces as in MH or where ∆(aMH(τ)) = 0, she

trivially induces the same effort in PS, since her prefered alternative remains available at

the same cost, while the costs to implement other efforts are at least weakly higher.

THEOREM 3—Effort Distortions: Assume that ∆ is strictly single-peaked where it is

strictly positive, and that CMH and CPS are differentiable where ∆ > 0. Then, there is

τ̂ such that for all τ , aPS(τ) − aMH(τ) has the same sign as τ − τ̂ and strictly so if

∆(aMH(τ))> 0 and aMH(τ) is interior.

Figure 4 provides intuition when the marginal cost functions are strictly increasing (the

proof in Appendix A.3 does not rely on this property). The theorem captures in a precise

way what we mean by “go big or go home.” When effort is not very important to the

principal, she responds by either lowering the amount of effort she asks of the agent or

simply switching the agent from taking initiative to the safer project. But, when effort and

initiative are important to the principal, she responds to the project selection problem by

continuing to induce initiative but increasing the effort that is asked of the agent.

It is a common observation that in a variety of settings including investment banking,

consultancy, law firms, and academia, success comes to those who exercise initiative, work

at an extreme level, and are lucky. The extreme effort has been explained in a variety of

ways including, for example, career concerns. The theorem provides a complementary ex-

planation: by asking extreme effort of the agent, the principal finds it easier to distinguish

whether initiative is being taken, which eases the impact of the project selection constraint.

Even when ∆ is not single-peaked, we can take the more modest step of asking whether

at high levels of effort constraint PS ceases to bind. To see why this is useful, consider a

case where constraint PS binds at low effort levels but not at high ones. If so, there must be

a region where the marginal cost of inducing effort is lower with constraint PS than without

it.23 This provides an impetus in the direction of going big for some range of τ , that is, of

the principal optimally choosing higher effort in PS than in MH. In Online Appendix B.4,

23That is, if aL < aH satisfy CPS(aL)>CMH(aL) but CPS(aH) =CMH(aH), then CPSa <CMH
a over

some interval between aL and aH .
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Figure 4.: Distortions. When ∆ is single peaked, then the marginal cost of effort CMH
a

crosses CPSa from below. As τ is increased, the marginal benefit curve Ba moves to the

northeast. The point τ̂ is determined when Ba goes through the intersection of CMH
a and

CPSa . For higher τ , optimal effort is higher in PS than MH (go big) while for lower τ ,

optimal effort is lower in PS than MH (go home).

we derive two sets of conditions under which PS indeed ceases to bind for high effort levels,

and provide a set of natural examples that have appeared in the moral-hazard literature.

7. HIGH STAKES

Outside of the square-root utility case, the equations describing the multipliers are for-

biddingly complex. Despite this, everything we learned in the square-root case generalizes

to a large class of utility functions when the agent’s reservation utility is sufficiently large.

In particular, the intuition based on the information-theoretic objects highlighted above

extends to this larger class.

Formally, we build on Chade and Swinkels (2020) (henceforth CS) and show that in a

class of utility functions the optimal contracts, and hence the behavior of costs, converge in

a strong sense to those in the square-root case as ū grows large. Of course, for this exercise

to be relevant, the principal has to want to employ the agent when ū is large. Thus, while

we focus on the cost-minimization problem of implementing each level of effort (a problem

that is parametrized by ū), in the background we are considering a sequence of economies

where ū grows, but so does the benefit of effort B to the principal. Hence, the stakes are
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high, in that both the agent has a good outside option and the principal places large value

on his services.

Let A=−u′′/u′ be the coefficient of absolute risk aversion, and let P =−u′′′/u′′ be the

coefficient of absolute prudence. As in CS we will make the following assumption.

ASSUMPTION 1: As w→∞, u→∞, u′→ 0, A/u′→ 0, and (3A− P )/u′→ 0.

As CS show, equivalent to this assumption is that ϕ has domain with least upper bound

∞, and that as utility goes to∞, ϕ′→∞, ϕ′′/ϕ′→ 0, and ϕ′′′/ϕ′′→ 0. These assumptions

hold with appropriate parameter restrictions for the HARA utility functions, but fail for

u(w) = logw, since ϕ′′′/ϕ′′ = 1 for all levels of utility.

Let vSR(·, a, ū) be the optimal contract implementing effort a with outside option ū with

square-root utility.24 Our next theorem establishes that under Assumption 1, vPS(·, a, ū)

and vSR(·, a, ū) become arbitrarily close both in level and slope as ū grows.25 To this end,

let

d(a, ū)≡ sup
x

∣∣∣vPS(x,a, ū)− vSR(x,a, ū)
∣∣∣ , and dx(a, ū)≡ sup

x

∣∣∣vPSx (x,a, ū)− vSRx (x,a, ū)
∣∣∣

be the maximum differences between vPS(·, a, ū) and vSR(·, a, ū) in value and slope.

THEOREM 4—Convergence of Compensation Schemes: Under Assumption 1, for each

ε > 0, there is ū∗ <∞ such that for all a and ū > ū∗, d(a, ū)≤ ε and dx(a, ū)≤ ε.

There are two moving parts to the proof. First, regardless of ū, the optimal compensation

scheme stays within a fixed band around ū. Second, given that ϕ′′′/ϕ′′→ 0, it follows that

ϕ′′ becomes essentially constant over the relevant range of utilities as ū grows. But, in the

square-root case ϕ′′ is a constant and so the two optimization problems become increasingly

similar. See Appendix A.4 for details.26

24That is, vSR is defined by (1), and depending on whether or not constraint PS binds at the solution to PMH ,

by the multipliers given in (2) or (3).
25This is a useful extension of what is shown in CS, who show that ratios of multipliers converge, but do not

show the limiting form of the contract.
26In Online Appendix B.6 we also show that for ū large, both CMH and CPS are convex, and so solutions to

the principal’s first-order conditions on the choice of effort characterize optima.
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8. EXISTENCE AND THE VALIDITY OF FOA

Two issues that we have not addressed so far are whether the relaxed problem PPS

has a solution, and whether its solution also solves PFull (that is, whether the first-order

approach is valid). In this section, we first discuss some results on feasibility for general

utility functions. Then, we turn to the square-root case, where existence is trivial, and where

the explicit solution allows us to produce quite general conditions for the validity of FOA.

Finally, building on Section 7, we show existence and feasibility for a large class of utility

functions when the stakes are high. In some settings, we will show that the solution to PPS

is a solution to PFull for some but not all actions. To see that this is of value, note that CPS

is a lower bound on the true cost of implementation at all effort levels. Hence if B is such

that B(·)−CPS(·, ū) is maximized at an effort level where feasibility holds, then the same

effort remains optimal facing the true cost function and the economics of the situation are

indeed driven by the solution to PPS .

8.1. General Utility Functions

For general utility functions, there are several instances in which we can justify the va-

lidity of replacing all the incentive constraints for effort by IC. First, if f(x|·) is linear, then

no matter the structure of the contract, the agent’s expected utility from income is linear in

effort, and so satisfying the first-order condition implies satisfying global incentive com-

patibility (recall that c is convex). This provides a tractable and economically relevant class

of examples. Indeed, Example 2 is one such. Second, in some settings, one can show that

the solution to the relaxed problem is increasing in x, in which case off-the-shelf conditions

such as the convexity of the distribution function condition (CDFC) establish the validity

of the first-order approach. As an example of this approach recall from Section 6 that in

many settings, PS ceases to bind at some effort a0, and so vPS is monotone at a0. Hence,

if ls is continuous with bounded slope, vPS will continue to be monotone for an interval to

the left of a0.27 Finally, in examples such as the exponential setting in Example 3, it is easy

to numerically check feasibility by brute force.

27If CDFC holds strictly, then at the lowest a at which vPS is monotone, the agent’s payoffs are strictly concave

in effort, and so they remain concave for a further interval to the left of this point. A similar point applies to the

conditions of Jewitt (1988).
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8.2. Square-Root Utility

In the square-root utility case, existence of a solution to PPS is trivial. Let us turn to the

validity of FOA. If the principal uses the contract vSR(·, a, ū), then the utility of the agent

who takes action a′ is

V (a′)≡ µPS
∫
lf(x|a′)− ηPS

∫
lsf(x|a′)− c(a′),

where µPS , ηPS , l and ls are evaluated at a. We would like to show that V is quasi-concave

with peak at a. Indeed, to facilitate our high-stakes analysis in the next section, we will ask

that in addition, V is strictly concave on a neighborhood of a.

Our main approach is to look for conditions on the information structure of the problem

under which each of the three terms in V is concave, and one term strictly so. Recall that

CDFC is the condition that Faa is positive. Say that F satisfies CDFC∗ if for each a′,

Faa(·|a′) is single-peaked and strictly positive except at its endpoints. Examples satisfying

CDFC commonly satisfy CDFC∗ (see Online Appendix B.7).

Under CDFC∗,
∫
lf(x|·) is strictly concave. Assume also that a is such that µSR > 0.28

Then the first term in V is strictly concave, while −c is concave. So, V will have the

required concavity if −
∫
lsf(x|·) is concave, or equivalently,

∫
lsfaa(x|a′)≥ 0 for all a′.

This is not immediate since ls is non-monotone. But, note that faa is positive before Faa
reaches its peak. Thus,

∫
lsfaa will be positive as desired if fs has “enough” of its mass

before the peak of Faa. Lemma 9 in Appendix A.5 gives a number of conditions formalizing

“enough.” Starting from any F satisfying CDFC∗, Lemma (9) allows easy construction of

densities fs such that FOA is valid.

Of course, for V to be quasi-concave, it need not be that all three terms are concave. For

example, since −c is concave, it is enough that the sum of the first two terms is concave. In

Appendix A.5, we explore this approach, and show that if ca/c is large enough, then this is

indeed true. Thus, if c = aβ/β, then FOA is valid when β is large enough. Similarly, one

can simply take caa large enough to make V strictly concave at any critical point. Each of

these exercises imply that ca and c, which appear in the multipliers, are large for any given

28This is equivalent to (Is − 1) ca + cσ ≥ 0 and so is an assumption on primitives.
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a > 0, and so such an exercise would be most relevant in a setting where as ca and c got

large, so did the benefit to the firm of effort via B.

8.3. High Stakes

Consider the setting of Section 7. Theorem 6 in Online Appendix B.8 establishes that for

u satisfying Assumption 1, a solution to two relaxed problems PPS and PMH exist when

ū is sufficiently large. The proof is novel, but builds on Kadan, Reny, and Swinkels (2017).

Now, let us turn to the validity of FOA. We have shown that for any given a, under a

variety of primitives
∫
vSR(x,a, ū)f(x|·) is quasi-concave with peak at a and is strictly

concave on a neighborhood of a. The following theorem closes the loop and shows that

when this holds, vPS(·, a, ū) also implements a for large enough ū.

THEOREM 5—FOA: High Stakes: Fix a and assume that
∫
vSR(x,a, ū)f(x|·) is quasi-

concave with peak at a and is strictly concave on a neighborhood of a. Then under As-

sumption 1, for ū large enough, vPS(·, a, ū) is feasible and hence optimal.

The proof is in Appendix A.5. The idea of the proof is that under the premise, the payoffs

to the agent facing vSR are strictly concave near a, and strictly negative for a′ further away

from a. But then, since vPS − vSR converges to 0 uniformly, the same two properties are

true for vPS , and thus a is the unique best response to vPS .

9. CONCLUSION

In many settings, the principal’s problem is not just to get the agent to work hard, but

also to work on the right things. We explore a setting which differs from the classic moral

hazard problem only in that the agent can “play it safe” by choosing a project that avoids

extreme outcomes. The need to induce initiative has significant economic implications.

Two main insights arise. First, under a simple condition on likelihood ratios, contracts will

tend to be “more convex” when initiative must be induced: low outcomes are punished less

harshly, middle outcomes are rewarded less generously, and high outcomes are rewards

more generously than without the extra constraint. But, while the condition on likelihood

ratios is simple and satisfied in many examples, it also fails in sensible examples. When

it does, the conventional wisdom that failure should be treated leniently when initiative

is important can be overturned, as can the intuition that success should be treated more
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generously. We identify the economic force driving these departures, and then, under a

more permissive yet intuitive condition, pin down the relative behavior of the compensation

schemes.

Second, the addition of the new constraint often adds a single-peaked function to the

cost of implementing effort. When this is true, there is a sharp prediction for the effort the

principal will induce compared to what she would do in the classic moral-hazard problem.

If the principal has relatively low value for effort, she will lower induced effort. But, when

the principal values output highly, she will raise induced effort. At an intuitive level, asking

more effort of the agent creates a larger probability of outcomes that are good news about

both effort and initiative, and this relaxes the problem of the principal in rewarding both

things simultaneously.

For square root utility case, we provide explicit expressions, which are driven by

information-theoretic objects related to the Fisher information, but generalized to this set-

ting. For a large class of utility functions, moreover, the solution in the square-root case

also drives the solution when the outside option of the agent is substantial. Finally, in this

setting, we provide a novel existence proof, and also primitives under which FOA is valid.

Our results speak to several current issues of organizational design. For example, it

suggests that decision-making authority over initiative might be usefully separated from

decision-making over effort. Indeed, consider Ford Motor Company’s recent reorganiza-

tion separating the electric vehicle initiative from the internal combustion arm of the firm.

One way of rationalizing this decision is that it allows Ford to create very strong incentives

for effort on issues like cost control and quality in the well-understood internal combustion

area, while creating incentives for initiative in the much more fluid electric vehicle space.

As a second example, consider a firm that wishes to create an environment in which

individuals who need work-life balance can thrive. If career concerns are the issue, then the

firm can attempt to mitigate the problem by policies such as forbidding email exchanges

outside of normal working hours and mandating minimum vacation periods, which are

indeed increasingly common. But, if the issue is distinguishing initiative from playing it

safe, then firms need to think hard about improving their ability to detect initiative without

inducing extreme effort levels.

At a technical level, we take some useful steps towards understanding moral-hazard

problems in which the agent has more actions than a one-dimensional choice of effort.
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We expect that with square-root utility, information-theoretic objects analogous to those

we exploit will continue to play a large role, and that the link between the square-root case

and a much larger set of utility functions as the outside option grows large will persist.

Regarding future research, each of the above examples of organizational design calls

for further modeling, as in each case the organizational response involves changes in the

information structure. It would also be interesting to better understand when the effects of

the need to induce initiative are large, and when they are small. Moreover, in our model

the agent has no private information about the distribution over outcomes given the various

actions. But, a CEO knows a lot about the challenges and opportunities facing her firm,

faculty know if they have a great but risky idea available or are going through a less creative

period, and a salesperson knows a lot about the likely outcome of aggressively pursuing a

more favorable deal with a given customer. Exploring the interaction of the forces we have

identified here with this private information seems of first-order interest. Finally, another

topic for future research is to understand how the need to motivate initiative affects dynamic

interactions between a principal and an agent.

BIBLIOGRAPHY

AZOULAY, P., G. ZIVIN, S. JOSHUA, AND G. MANSO (2011): “Incentives and Creativity: Evidence from the

Academic Life Sciences,” The RAND Journal of Economics, 42, 527–554. [6]

BARRON, J., AND G. WADDELL (2003): “Executive Rank, Pay and Project Selection,” Journal of Financial

Economics, 67, 305–349. [6]

BEESACK, P. R. (1957): “A Note on an Integral Inequality,” Proceedings of the Americal Mathematical Society,

8(5), 875–879. [32, 44]

BERTSEKAS, D., AND S. SHREVE (1978): Stochastic Optimal Control: The Discrete-Time Case. Athena Scien-

tific. [66]

BIAIS, B., AND C. CASAMATTA (1999): “Optimal Leverage and Aggregate Investment,” Journal of Finance,

54, 1291–1323. [7]

CHADE, H., AND N. KOVRIJNYKH (2016): “Delegated Information Acquisition with Moral Hazard,” Journal of

Economic Theory, 162, 55–92. [6]

CHADE, H., AND J. SWINKELS (2020): “The Moral Hazard Problem with High Stakes,” Journal of Economic

Theory, 187. [5, 23]

DEMSKI, J., AND R. DYE (1999): “Risk, Return, and Moral Hazard,” Journal of Accounting Research, 37, 27–55.

[6]

DITTMANN, I., K. YU, AND D. ZHANG (2017): “How Important are Risk-Taking Incentives in Executive Com-

pensation,” Review of Finance, 5, 1805–1846. [7]



30

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

EDERER, F., AND G. MANSO (2013): “Is Pay for Performance Detrimental to Innovation?,” Management Sci-

ence, 59, 1496–1513. [6]

GEORGIADIS, G., D. BARRON, AND J. SWINKELS (2020): “Optimal Contracts with a Risk-Taking Agent,”

Theoretical Economics, 15, 715–761. [7]

GROSSMAN, S., AND O. HART (1983): “An Analysis of the Principal-Agent Problem,” Econometrica, 51, 7–45.

[5]

HELLMANN, T., AND V. THIELE (2011): “Incentives and Innovation: A Multitasking Approach,” American

Economic Journal: Microeconomics, 3, 78–128. [6]

HIRSHLEIFER, D., AND Y. SUH (1992): “Risk, Managerial Effort, and Project Choice,” Journal of Financial

Intermediation, 2, 308–345. [6]

HOLMSTRÖM, B. (1979): “Moral Hazard and Observability,” Bell Journal of Economics, 10, 74–91. [2, 10]

HOLMSTRÖM, B., AND J. COSTA (1986): “Managerial Incentives and Capital Management,” Quarterly Journal

of Economics, 101, 835–860. [7]

JEWITT, I. (1988): “Justifying the First-Order Approach to Principal-Agent Problems,” Econometrica, pp. 1177–

1190. [25]

KADAN, O., P. RENY, AND J. SWINKELS (2017): “Existence of Optimal Mechanisms in Principal-Agent Prob-

lems,” Econometrica, 85(3), 769–823. [5, 27, 66]

LAMBERT, R. (1986): “Executive Effort and Selection of Risky Projects,” The RAND Journal of Economics, pp.

77–88. [6]

LAUX, V. (2015): “Executive Pay, Innovation, and Risk-Taking,” Journal of Economics & Management Strategy,

24, 275–305. [7]

LICALZI, M., AND S. SPAETER (2003): “Distributions for the First-Order Approach to Principal-Agent Prob-

lems,” Economic Theory, 21, 167–173. [52]

LUENBERGER, D. (1969): Optimization by Vector Space Methods. John Wiley & Sons. [13, 68]

MANSO, G. (2011): “Motivating Innovation,” The Journal of Finance, 66, 1823–1860. [6, 15, 16]

MIRRLEES, J. (1975): “On Moral Hazard and the Theory of Unobservable Behavior,” Nuffield College. [2, 10]

SUNG, J. (1995): “Linearity with Project Selection and Controllable Diffusion Rate in Continuous-Time

Principal-Agent Problems,” The RAND Journal of Economics, pp. 720–743. [7]

APPENDIX A: PROPERTIES OF THE OPTIMAL CONTRACT

A.1. Proofs for Section 4

DETAILS FOR SQUARE-ROOT UTILITY CASE. We start with the following lemma.

LEMMA 2—Sign of Is − 1− σ2

Ia : The expression Is − 1− σ2

Ia is strictly positive ∀a.

Proof Define ζ(x,a)≡ 1+ σ
Ia
fa(x|a)
f(x|a) −

fs(x)
f(x|a) , noting that

∫
ζf = 0. Since− fs(·)

f(·|a) is strictly

quasi-convex, with interior minimum at some x̃ for each a, while fa(·|a)
f(·|a) is strictly mono-
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tone, it follows that regardless of the sign of σ
Ia , ζ(·, a) is either strictly increasing to the

right of x̃ or strictly decreasing to the left of x̃, and so is not everywhere zero. Hence,∫
ζ2(x,a)f(x|a)dx > 0. But, using that (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc,∫

ζ2(x,a)f(x|a)dx=

∫ (
1 +

σ

Ia
fa(x|a)

f(x|a)
− fs(x)

f(x|a)

)2

f(x|a)dx

= 1 +
σ2

Ia
+ Is + 0− 2− 2

σ2

Ia
= Is − 1− σ2

Ia
,

and we are done. �

LEMMA 3—Solution Square Root Utility: Let u(w) =
√

2w. Assume the constraint that

v ≥ 0 does not bind. If c(a)Ia + ca(a)σ ≤ 0, then the solution to the pure moral hazard

problem PMH solves PPS , and the multipliers are λMH = ū + c(a) and µMH = ca(a)
Ia ,

while if c(a)Ia + ca(a)σ ≥ 0, then PS binds, and the multipliers are

λPS = λMH + ηPS , µPS = µMH +
ηPSσ

Ia
, and ηPS =

c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2 .

Proof Note that ϕ(û) = û2/2, and so ϕ′(û) = û. Thus, we can replace v(x) = ϕ′(v(x)) =

λ+ µl(x|a)− ηls(x|a) in the constraints to arrive, in the case where all three constraints

bind, but the constraint that v ≥ 0 does not, at the system of equations∫
(λ+ µl(x|a)− ηls(x|a))f(x|a)dx= ū+ c(a)∫

(λ+ µl(x|a)− ηls(x|a))fa(x|a)dx= ca(a)∫
(λ+ µl(x|a)− ηls(x|a))fs(x)dx= ū.

This can then be rewritten as λ− η = ū+ c(a), µIa − ησ = ca(a), and λ+ µσ − ηIs = ū,

to which it can easily be verified the solution is as claimed, where by Lemma 2, ηPS =s

c(a)Ia+ca(a)σ. The multipliers for PMH are derived similarly. Finally, note that the value

to the agent of taking the safe action facing vMH is

ū+ c(a) +
ca(a)

Ia

∫
l(x|a)fs(x)dx= ū+ c(a) +

ca(a)

Ia
σ(a),

and so if c(a)Ia + ca(a)σ ≤ 0 then vMH solves PPS . �



32

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

LEMMA 4—Negative σ: If l(·|a) is convex then sufficient for σ(a)< 0 is that E[x|a]>

E[x|as]. If l(·|a) is concave then sufficient for σ(a)< 0 is that E[x|as]< x̂(a).

Proof Consider first the case that l is convex. Note that since ls is single peaked, F − F s

is first positive and then negative, and let x̀ be such that F − F s is positive to the left of x̀

and negative to the right of x̀. Then,

σ(a) =

∫
l(x|a)fs(x|a)dx=

∫
l(x|a) (fs(x|a)− f(x|a))dx (5)

=

∫
lx(x|a) (F (x|a)− F s(x|a))dx≤ lx(x̀|a)

∫
(F (x|a)− F s(x|a))dx

= lx(x̀|a) (E[x|as]−E[x|a])< 0,

where the second equality uses that
∫
lf =

∫
fa = 0, and the third integrates by parts.

The inequality uses that convexity of l and the sign pattern of F − F s together imply that

lx(x̀|a)− lx(x|a) =s F (x|a)− F s(x|a).

Assume that l(·|a) is concave. Then σ(a) =
∫
l(x|a)fs(x)dx≤ l(E[x|as]|a) by Jensen’s

inequality. Thus, σ < 0 if l(E[x|as]|a)< 0, or equivalently, if E[x|as]< x̂(a). �

A.2. Proofs for Section 5

AT LEAST TWO CROSSINGS. We now prove that vPS − vMH crosses at least twice.

Proof of Lemma 1 Since both contracts satisfy IR, vPS and vMH must cross at least once.

Assume they cross exactly once, where, for example, vMH crosses vPS from below. Then,

since by IR ,
∫ (
vMH(x)− vPS(x)

)
f(x|a)dx = 0, and since fa

f is increasing, it follows

from an inequality in Beesack (1957) that

0<

∫ (
vMH(x)− vPS(x)

)
f(x|a)

fa(x|a)

f(x|a)
dx=

∫
vMH(x)fa(x|a)dx−

∫
vPS(x)fa(x|a)dx

which is inconsistent with IC being satisfied for both vPS and vMH . We conclude that vPS

and vMH cross at least twice. �

RESCALING OUTPUT AND THE FUNCTION ls(l−1(·|a)). Consider the function ls(l−1(·|a))

which has domain [l(0|a), l(x̄|a)]. This is the function that arises when one rescales output

such that l(·|a) is the identity. Let us first establish that this is strictly concave if and only
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if lsx/lx is strictly decreasing. This follows since

(ls(l−1(τ |a)))τ =
lsx(l−1(τ |a)|a)

lx(l−1(τ |a)|a)
, and thus (ls(l−1(τ |a)))ττ =

(
lsx
lx

)
x

l−1
τ (τ |a) =s

(
lsx
lx

)
x

.

Similarly, ls is SBS if and only if ls(l−1(·|a)) does not shift from strictly concave to strictly

convex before the peak of ls nor from strictly convex to strictly concave beyond the peak.

Thus, SBS holds if (1) lsx/lx is strictly quasiconcave on [x`, x̃] and is strictly quasiconvex

on [x̃, xh] and (2) if x` > 0 and fs(x`)> 0 then lsx/lx is strictly decreasing on [x`, x̃] while

if xh < x̄ and fs(xh)> 0 then lsx/lx is strictly decreasing on [x̃, xh].

For an example, let fs be uniform on [0, x̄]. Then one can show that
((

fs

f

)
x
/
(
fa
f

)
x

)
x

=s

fxfaxx − faxfxx. Thus, lsx/lx is strictly decreasing if and only if fxfaxx − faxfxx < 0.

Equivalently, |fx| is log-submodular. In the spanning case where f = (1− a)fl + afh, we

have fxfaxx−faxfxx = flxfhxx−fhxflxx, and so sufficient is that fl is strictly convex and

strictly decreasing and fh is strictly convex and strictly increasing.

If fs has less than full support, then under the same conditions, ls is semibellshaped

because it is convex on its support. In general ls will be semi-bellshaped if |fx| does not

change from log-submodular to log-supermodular before the minimum of f , or from log-

supermodular to log-submodular after the minimum of f .

A NON-MONOTONE vPS . We asserted in main text that vPS can be decreasing for

low outputs. To see this, note that when ls is differentiable, since lsx(0) > 0, a suffi-

cient condition for vx(0) < 0 is µPS < 0. But, substituting from (3) and simplifying,

µPS =s ca(a)(Is− 1) + c(a)σ. So for example, let f(x|a) = (1− a)f`(x) + afh(x), where
fh
f`

is increasing, and let c(a) = a2. Since f is linear in a, there is no issue about the validity

FOA. One can show that µPS is negative at a= 1 if and only if
∫

(2fs − f` − fh) f
s

fh
dx < 0.

Thus, consider fs = 6x(1− x), fh = bxb−1, f` = dxd−1 on [0,1]. Note that for b > d, fs is

single-peaked, while f is single-troughed, and so our condition that fs crosses f first from

below and then from above is satisfied. It is easily checked numerically that µPS(1) < 0

for b ∈ [2,2.2], and d ∈ [0.2,5], and hence µPS < 0 for a sufficiently close to 1.

DETAILS FOR EXAMPLE 2. Note first that σ =
∫ 1

2
3
8

8
1+a

3

1
3dx= 1

a+3 while

Ia =

∫ 1
8

0

(−1)2

1− τ − a
dx+

∫ 1
4

1
8

(−1)2

1 + τ − a
dx+

∫ 1

1
4

(
1

3

)2

1 + a/3
dx=

1

4 (a+ 3)

τ2 + 4a− 4

−a2 + 2a+ τ2 − 1
,
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and so σ
Ia =

4(1+a2−2a−τ2)
4−τ2−4a

, where when a < 1− τ , both top and bottom are positive.

But, on [0,1/8], l =−1/(1− τ −a), and ls = 0, and so vPS − vMH =s −τ τ+4
4−τ2−4a

< 0.

Similarly, on (1/8,1/4], vPS − vMH =s τ
4−τ

4−τ2−4a
> 0. On (1/4,3/8) and (1/2,1], vPS −

vMH =s 1 +
4(1+a2−2a−τ2)

4−τ2−4a

1
3

1+a
3
> 0, while on [3/8,1/2]

vPS − vMH =s 1 +
4
(
1 + a2 − 2a− τ2

)
4− τ2 − 4a

1

3

1 +
a

3

− 8

1 +
a

3

=s (17− a) τ2 − 80(1− a) = 80a+ 17τ2 − aτ2 − 80

≤ (17− (1− τ)) τ2 − 80(1− (1− τ)) = τ
(
τ2 + 16τ − 80

)
< 0.

DETAILS FOR EXAMPLE 3. The Fisher information Ia is 1/a2. To verify this, note that

fa(x|a) = −e−xa (a− x)/a3 and so l(x|a) =
− 1
a3
e−

1
ax(a−x)

1
ae
−xa

= 1
a2

(x − a). But then, Ia =∫ (
1
a2

(x− a)
)2 1

ae
−xadx= 1

a2
. Next, note that σ =

∫ fs

f fa =
∫∞

1
e−(x−1)
1
ae
−x/a

(
− 1
a3
e−

1
ax (a− x)

)
dx=

2−a
a2

. Finally, since fs = e−(x−1) on [1,∞) we have Is =
∫∞

1

(
e−(x−1)

)2
1
ae
−x/a dx, which is infinite

for a ∈ (0, 1
2), while for a > 1

2 it is equal to Is = a2

2a−1e
1
a .

Next, let us derive the crossing behavior of vMH and vPS . We have that

vPS − vMH =s
vPS − vMH

η
= 1 +

σ

Ia
l(x|a)− ls(x|a) = 1 + (a− 2)

1

a2 (a− x)− ls(x|a)

where ls(x|a) = 0 for x < 1, and ls(x|a) = ae−(x−1)+x/a for x≥ 1. For x ∈ [0,1), the last

expression is clearly positive for a≥ 2. For x≥ 1, it is routine to establish that for a ∈ (2,4)

the last expression is strictly concave in x, strictly negative at x = 1, strictly positive at

x= 5 and strictly negative for x large enough. Hence vPS is HLHL.

Finally, let us calculate the value to the agent of deviating to effort t facing vPS(·;a), the

contract that implements effort a in the relaxed problem. The utility gain from the deviation

is −ū− t2 +
∫
vPS(x;a)f(x|t)dx, which is equal to

− ū− t2 +

∫ (
ū+ c(a) +

ca(a)

Ia
l(x|a) + η

(
1 +

σ

Ia
l(x|a)− ls(x|a)

))
f(x|t)dx

= c(a) + η− t2 +

(
ca(a)

Ia
+ η

σ

Ia

)∫
l(x|a)f(x|t)dx− η

∫
ls(x|a)f(x|t)dx
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𝑎

𝑎′

Figure 5.: Agent Optimality. The figure depicts the agent’s expected payoff from deviating

from a to a′. It shows that this payoff is negative.

= a2 + η− t2 +

(
2a+ η

2− a
a2

)∫
(x− a)

1

t
e−

x
t dx− ηa

t

∫ ∞
1

e−(x−1)+x
a−

x
t dx

But,
∫

(x− a) 1
t e
−xt dx = −e− 1

t x (t− a+ x)
∣∣∣∞
0

= t − a, and
∫∞

1 e−(x−1)+x
a−

x
t dx =

e
1
a−

1
t

1− 1
a+ 1

t

, where since a≥ 2, 1− 1
a + 1

t > 0. The gain to the deviation is thus

− (a− t)2 + η

1 +
2− a
a2 (t− a)− a

t

e
1
a−

1
t

1− 1

a
+

1

t

 .

Note finally that

η =
cIa + caσ

(Is − 1) Ia − σ2 =
a2 1

a2 + 2a
2− a
a2(

a2

2a− 1
e
1
a − 1

)
1

a2 −
(

2− a
a2

)2 =
a (4− a)

a2

2a− 1
e
1
a − 1−

(
2− a
a

)2 .

In Online Appendix B.5, we show that if the principal chooses to induce initiative, she will

induce at least an effort of 2.8 or above (the intuition is that because the safe project can be

induced by paying the outside option, inducing an effort a little above 2 makes sense only

if β is very large. But then, a higher effort is better still). Figure 5 plots for a ∈ [2.8,4], the

value to the agent of deviating to any given action a′ when faced with the contract solving

PPS for that a. It is clear that the agent has no profitable deviation.
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SBS AND AT MOST THREE CROSSINGS. We now prove the results regarding the structure

of compensation under the semi-bellshaped condition.

Proof of Theorem 2 Fix and suppress a and let τ ≡ l(0), τ̄ ≡ l(x̄), τ` = l(x`), τh = l(xh),

and τ̃ = l(x̃), where recall that [x`, xh] is the support of fs and x̃ be the maximizer of ls.

Consider first the case µPS − µMH = 0. Then, it cannot be that λPS − λMH ≤ 0, since

then D is always negative, violating Lemma 1. Thus, any crossing of D with zero occurs

where ls(l−1) > 0 and so on [τ`, τh] an interval over which D(τ) is strictly quasiconvex

given µPS −µMH = 0 and thus crosses zero at most two times. By Lemma 1, vPS is HLH.

Now, consider µPS − µMH > 0. If D changes sign three or more times, then over some

interval D must have sign pattern −/+ /−. Take the rightmost region J = [τ ′, τ ′′]⊆ (τ , τ̄)

over which D is positive, and where D changes sign at τ ′ and τ ′′. We will show that D is

strictly negative on [τ , τ ′). But then, the pattern −/+ /− occurs over at most one interval,

and if it does, then there can be one more region where D is positive to the right of τ ′′, but

this region must include τ̄ . No further crossings of D are possible. Hence, the only sign

pattern consistent with more than two crossings results in vPS being LHLH.

Assume first that τ ′ < τ`. Then since D is continuous at τ ′, D(τ ′) = 0 and D is strictly

increasing on [τ , τ`) and it it immediate that D is strictly negative on [τ , τ ′). Next, assume

τ ′ = τ`. Then, if ls jumps up at τ` then D is strictly positive on an interval to the right of

τ ′, contradicting that D changes sign at τ ′. Thus τ ′ is again a continuity point of D, and so

D(τ ′) = 0 and D is strictly increasing on [τ , τ`] and thus D is strictly negative on [τ , τ ′).

Finally, assume τ ′ > τ`. If τ ′′ ≥ τ̃ , then we have a contradiction, since D ≥ 0 on (τ ′, τ ′′)

and D is strictly increasing on [τ̃ , τ̄ ] (using that ls is decreasing and µPS − µMH > 0) and

hence D is strictly positive on [τ ′′, τ̄ ] contradicting that D changes sign at τ ′′. Hence, we

have τ` < τ ′ < τ ′′ < τ̃ and so D is continuous at τ ′ and τ ′′ and so is equal to zero at each. It

follows that ls is strictly convex at τ ′. To see this, note that if ls(l−1) is concave at τ ′ then

by SBS it is strictly concave on (τ ′, τ ′′]. But then since D(τ ′) = D(τ ′′) = 0, D is strictly

negative on [τ ′, τ ′′], a contradiction. Thus, D(τ ′) = 0, Dx(τ ′)≥ 0, D is strictly concave on

(τ`, τ
′) and concave on [τ , τ ′] and so D< 0 on [τ , τ ′), and done.

Similarly, if µPS − µMH < 0, and if J = [τ ′, τ ′′] is interior to [τ , τ̄ ], with D positive

on J and changing signs at τ ′ and τ ′′, then D is strictly negative everywhere to the right

of τ ′′ and so the only sign pattern consistent with more than two crossings is HLHL. In

particular, if τ ′′ ≥ τh then since D is strictly decreasing to the right of τh, it is strictly
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negative to the right of τ ′′, while if τ ′′ < τh then one argues symmetrically to above to show

that τ̃ < τ ′ < τ ′′ < τh and so D is concave and hence strictly negative from τ ′′ onwards. �

Proof of Proposition 1 Note that λPS − λMH + (µPS − µMH)τ − ηls(τ) is linear in τ ,

and hence if negative at both τ and τ̄ , is negative everywhere. But then, using the premise,

vPS − vMH is everywhere negative, violating Lemma 1. Thus, vPS is strictly above vMH

at at least one of 0 and x̄. But then, if there are only two crossings, HLH holds. �

A.3. Proofs for Section 6

∆ IN SQUARE-ROOT CASE. Note that vPS = vMH +η(1+(σ/Ia)l(x|a)− ls(x|a)). Thus,

CPS(a, ū) =
1

2

∫ (
vPS(x)

)2
f(x|a)dx

=
1

2

∫ (
vMH + η

(
1 +

σ

Ia
fa(x|a)

f(x|a)
− fs(x)

f(x|a)

))2

f(x|a)dx

=
1

2

∫ (
vMH

)2
f(x|a)dx+

η

2

∫
vMH

(
1 +

σ

Ia
fa(x|a)

f(x|a)
− fs(x)

f(x|a)

)
f(x|a)dx

+
η2

2

∫ (
1 +

σ

Ia
fa(x|a)

f(x|a)
− fs(x)

f(x|a)

)2

f(x|a)dx,

where 1
2

∫ (
vMH

)2
f(x|a)dx=CMH(a). Consider the second term, and note that∫ (

1 +
σ

Ia
fa
f
− fs

f

)
fdx=

∫
fdx+

σ

Ia

∫
fadx−

∫
fsdx= 0.

Hence,∫
vMH

(
1 +

σ

Ia
fa
f
− fs

f

)
dx=

∫ (
λMH + µMH fa

f

)(
1 +

σ

Ia
fa
f
− fs

f

)
fdx

= µMH

∫
fa
f

(
1 +

σ

Ia
fa
f
− fs

f

)
fdx

= µMH
(

0 +
σ

Ia
Ia − σ

)
= 0

and so we have ∆ = η2

2

∫ (
1 + σ

Ia
fa(x|a)
f(x|a) −

fs(x)
f(x|a)

)2
f(x|a)dx. But then, by Lemma 2, ∆ =

η2

2Ia ((Is−1)Ia−σ2). Recalling that η = cIa+caσ
(Is−1)Ia−σ2 we have, after taking the cancellation,
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that ∆ = 1
2Ia

(
c+ ca

σ
Ia

)2
/((Is − 1)− σ2

Ia ), where since by assumption PS binds, we have

cIa + caσ > 0, and we are done.

DETAILS FOR EXAMPLE 4. Using Example 3, we obtain that for a≥ 1
2 ,

∆ =

(
a2 1

a2 + 2a

(
2− a
a2

))2

−
(

2− a
a2

)2

+

(
a2

2a− 1
e
1
a − 1

)
1

a2

1
1

a2

=
(a(4− a))2

a2

2a− 1
e
1
a − 1− (2− a)2

a2

,

which is equivalent to the expression stated in main text.

AN EXAMPLE WHERE EFFORT DISTORTIONS ARE LARGE IN BOTH DIRECTIONS. Con-

sider the following (carefully constructed) example. There are four outputs, x1 = 0, x2 = 1,

x3 = 2, and x4 = 10. Effort lies in [0,1] with probabilities of output given a ∈ [0,1] given by

p1 = (1/4)(1− a), p2 = (1/4)(1− a), p3 = 0.35(1 + a), and p4 = 0.15(1 + a), while under

as, ps2 = 0.05 and ps3 = 0.95.29 Since probabilities are linear in a, the first-order approach is

valid. The disutility of effort a is c(a) = (1/(1.15− a))− (1/1.15)− (1/(1.15)2)a, utility

of income is u(w) = logw, and ū= 0. In Figure 6, the left panel shows CMH in magenta

and CPS in blue. The difference between them is single-peaked and PS ceases to bind for

a close to one. The right panel shows the optimal efforts as a function of β.30 The jump

in aPS occurs where βEa[x|a] equals the slope of the dotted line in the left panel.31 This

generates an extreme example of Theorem 3.

EFFORT DISTORTIONS. Let â be the action at which ∆ reaches its maximum, and let τ̂ be

such that for τ < τ̂ we have aPS(τ)≤ â and for τ > τ̂ , aPS ≥ â, noting that B − CPS is

strictly supermodular in (a, τ), and so such a τ̂ exists.

Proof of Theorem 3 Note that for any τ ,

B(aPS(τ), τ)−CPS(aPS(τ))≥B(aMH(τ), τ)−CPS(aMH(τ))

B(aMH(τ), τ)−CMH(aMH(τ))≥B(aPS(τ), τ)−CMH(aPS(τ))

29The example can be modified to make MLRP strict.
30It is easily verified that E[x|0]> E[x|as]. Hence, since a flat contract that pays the outside option induces as

and a= 0 in either PMH and PPS , it follows that for any β > 0, the principal prefers implementing a= 0 to as

in either MH or PS. A fortiori, she is better off to implement the optimal effort than as.
31The jump can be made arbitrarily large by lowering ps2, or by raising p3 while lowering p4.
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β

Figure 6.: Costs and Optimal Efforts. The left panel depicts that the difference between

CPS and CMH is single-peaked and large. The right panel shows that optimal effort in PS

is first substantially below and then substantially above that in MH.

and so, adding the two inequalities and manipulating, we obtain

∆(aMH(τ))≥∆(aPS(τ)). (6)

Assume that τ > τ̂ so that aPS(τ) ≥ â. If ∆(aMH(τ)) = 0, then aPS(τ) = aMH(τ),

and we are done. So, assume ∆(aMH(τ))> 0 and towards a contradiction, that aMH(τ)>

aPS(τ). Then, ∆ is strictly decreasing between aPS(τ) and aMH(τ), contradicting (6).

Thus, aPS(τ)≥ aMH(τ).

Finally, assume aMH(τ) is interior, and towards a contradiction, assume that aPS(τ) =

aMH(τ). Then Ba(aMH(τ), τ)− CPSa (aMH(τ)) = Ba(a
MH(τ), τ)− CMH

a (aMH(τ)) =

0, and so ∆a(a
MH(τ)) = 0. But then, aPS(τ) = aMH(τ) = â where by assumption â

is interior. Let τ ′ = (τ̂ + τ)/2. Since B is strictly supermodular, aPS(τ ′) ≤ â and since

Ba(â, τ
′)−CPSa (â)< 0, in fact aPS(τ ′)< â, contradicting the definition of τ̂ . �

A.4. Proofs for Section 7

The proof of Theorem 4 will follow from several technical lemmas, which will also allow

us to derive some additional properties of the problem when ū is sufficiently large. Some

of the proofs of these lemmas are in Online Appendix B.6.

Let us first derive the equations that define the multipliers. Recall that ϕ= u−1. We have

the following expressions for λ, µ, and η.
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LEMMA 5—Multipliers: Where PS binds, λ, µ, and η are implicitly defined by

λ=

∫
ϕ′(vPS(x,a, ū))f(x|a)dx+ η,

µ=

∫
ϕ′(vPS(x,a, ū))fa(x|a)dx

Ia
+
ησ

Ia
, and

η =

∫
ϕ′(vPS(x,a, ū)) [Ia (1− ls(x|a)) + σl(x|a)]f(x|a)dx

Ia (Is − 1)− σ2 .

For a given contract v, define W (v) = maxx v(x)−minx v(x), as the maximum amount

by which v differs at its highest and lowest points, whereW is mnemonic for “wiggle." The

following lemma shows that if vPS has bounded wiggle, then as ū diverges, the multipliers

λ, µ, and η take on very simple forms. The predicate W (vPS(·, a, ū)) < J will automati-

cally hold for some J <∞ when PS is satisfied at vMH as shown in CS Lemma 3. The

reason for this at an intuitive level is that vMH is monotone, and a monotone contract that

rises by more than a certain amount will provide excessively strong incentives, violating

IC . But, because PS contracts may cease to be monotone, and because of the complexities

that η adds, we will have to work harder to bound W . We do so below.

LEMMA 6—Limit Multipliers: Let Assumption 1 hold, let 0 < J <∞, and let ε > 0.

Then, there is ū∗ <∞ such that for all ū > ū∗, and for all a, if W (vPS(·, a, ū))< J , and if

PS binds, then∣∣∣∣∣ λPS

ϕ′(ū+ c)
− 1

∣∣∣∣∣< ε,

∣∣∣∣∣ µPS

ϕ′′(ū+ c)
− (Is − 1)ca + σc

(Is − 1)Ia − σ2

∣∣∣∣∣< ε,

∣∣∣∣∣ ηPS

ϕ′′(ū+ c)
− cIa + caσ

(Is − 1)Ia − σ2

∣∣∣∣∣< ε.

If PS does not bind, so that vPS = vMH , then ηPS = 0, and∣∣∣∣∣ λMH

ϕ′(ū+ c)
− 1

∣∣∣∣∣≤ ε, and

∣∣∣∣∣ µMH

ϕ′′(ū+ c)
− ca
Ia

∣∣∣∣∣< ε.

Note that where cIa + caσ = 0, we have c=−ca σIa . But then, (Is−1)ca(a)+σc(a)
(Is−1)Ia−σ2 = ca(a)

Ia ,

and so the two versions of vSR agree, and thus vSR is continuous. Note also that since

(Is − 1)Ia − σ2 > 0 and Is − 1> 0 all the limiting multipliers are positive, with µ strictly
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positive. Hence, since for x > E[x|as] sufficiently large, −ls(·|a) is strictly increasing ,

while l(·|a) is everywhere strictly increasing, vSR is not constant except when a= 0.

Let JSR ≡ maxaW
(
vSR(·, a, ū)

)
be the maximum wiggle that vSR takes on when a

varies. This is finite, since ū cancels out, and the remaining expression of a and x is contin-

uous over a compact set. It is also strictly positive, since vSR is not constant when a > 0.

Now consider vPS . We will show that in a very strong sense, vPS(·, a, ū) behaves in the

limit like vSR(·, a, ū). Recall the definition of d(a, ū) and dx(a, ū) given in Section 7.

We begin by showing that where c(a)Ia + ca(a)σ < 0, PS ceases to bind for large ū, and

the contract converges to one that is simply vSR(·, a), which in this case is the standard

contract in the square-root case with pure moral hazard.

LEMMA 7—PS Not Binding: Let Assumption 1 hold, and let c(a)Ia + ca(a)σ <

0. Then, for all ε > 0, there is ū∗ < ∞ such that for all ū > ū∗, vPS(·, a, ū) =

vMH(·, a, ū), dx(a, ū) < ε and d(a, ū) < ε. If c(a)Ia + ca(a)σ > 0 then for large ū, PS

fails at vMH(·, a, ū).

Proof Choose a where c(a)Ia + ca(a)σ < 0, and consider first vMH(·, a, ū). Consider any

ū > ū∗, and let ρ be the function defined by ϕ′(ρ(τ)) = τ . Since vMH(x,a, ū) = ρ(λ +

µl(x|a)), we have vMH
x (x,a, ū) = ρ′ (λ+ µl(x|a))µlx(x|a) > 0. But, since ϕ′(ρ(τ)) = τ ,

we have ϕ′′(ρ(τ))ρ′(τ) = 1, and so ρ′ (λ+ µl(x|a)) = 1
ϕ′′(vMH(x,a,ū))

. Substituting and

then multiplying and dividing by ϕ′′(ū+ c), we obtain

vMH
x (x,a, ū) =

ϕ′′(ū+ c)

ϕ′′(vMH(x,a, ū))

µ

ϕ′′(ū+ c)
lx(x|a).

But, by CS, Lemma 3, there is some J < ∞ such that for all ū sufficiently large,

vMH(x,a, ū) − ū − c(a) < J for all x and a. It follows from CS Lemma 1 that
ϕ′′(ū+c)

ϕ′′(vMH(x,a,ū))
→ 1 uniformly in x and a. Also by CS, Proposition 1, µ

ϕ′′(ū+c(a)) →
ca(a)
Ia

uniformly in a, and so it follows that vMH
x (x,a, ū)− ca(a)

Ia lx(x|a)→ 0 uniformly in x and

a, establishing that for ū sufficiently large and for all a, dx(a, ū) < ε. Thus, recalling that

x̂(a) is the point where l(x|a) = 0,

vMH(x,a, ū)− vMH(x̂(a), a, ū)→ ca(a)

Ia
l(x|a) (7)
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uniformly in x. Now, from IR,
∫
vMH(x,a, ū)f(x|a)dx− ū− c(a) = 0, and so, adding and

subtracting vMH(x̂(a), a, ū) and rearranging,

vMH(x̂(a), a, ū)− ū− c(a) +

∫ (
vMH(x)− vMH(x̂(a))

)
f(x|a)dx= 0

But, by (7),∫ (
vMH(x,a, ū)− vMH(x̂(a), a, ū)

)
f(x|a)dx→ ca(a)

Ia

∫
l(x|a)f(x|a)dx= 0

and hence vMH(x̂(a), a, ū)− ū− c(a)→ 0. It follows that

vMH(x,a, ū)−
(
ū+ c(a) +

ca(a)

Ia
l(x|a)

)
→ 0,

uniformly in x and a, and so since vSR(·, a) = ū + c(a) + ca(a)
Ia l(·|a) where c(a)Ia +

ca(a)σ < 0, we have shown that for all ū sufficiently large and for all a, d(a, ū)< ε.

To establish the remaining claims, note that the value of taking as over ū facing vMH is∫
vMH(x,a, ū)fs(x)dx− ū=

∫ (
vMH(x,a, ū)− ū

)
fs(x)dx

→
∫ (

c(a) +
ca(a)

Ia
l(x|a)

)
fs(x)dx= c(a) +

ca(a)

Ia
σ,

and so if c(a)Ia + ca(a)σ < 0 then for high ū, PS does not bind at vMH(·, a, ū), while if

c(a)Ia + ca(a)σ > 0 then for high ū, vMH(·, a, ū) fails PS . �

Our next lemma shows that as ū grows, for each a, one of two things happens. Either

vPS(·, a, ū) and vSR(·, a, ū) grow arbitrarily close to each other, or they stay a large distance

apart. Intermediate outcomes do not occur.

LEMMA 8—Distance between vPS and vSR: Let Assumption 1 hold. Then, for each

ε ∈ (0, JSR/2), there is a threshold ū∗ <∞ such that for all ū > ū∗, and for all a, either

d(a, ū)≤ ε and dx(a, ū)≤ ε or d(a, ū)≥ JSR.

Proof Note first that where c(a)Ia + ca(a)σ < 0, then by Lemma 7, we are always in the

first case for large enough ū. Consider c(a)Ia + ca(a)σ > 0, and assume that the second

case fails, so that d(a, ū) < 3JSR, and note that since for large enough ū, PS binds, we
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have that vPS(x,a, ū) = ρ(λ+ µl(x|a)− ηls(x|a)), and thus

vPSx (x,a, ū) = ρ′ ((λ+ µl(x|a)− ηls(x|a))) (µlx(x|a)− ηlsx(x|a))

=
1

ϕ′′(vPS(x,a, ū))
(µlx(x|a)− ηlsx(x|a))

and so, multiplying and dividing by ϕ′′(ū+ c(a)), we have

vPSx (x,a, ū) =
ϕ′′(ū+ c(a))

ϕ′′(vPS(x,a, ū))

(
µ

ϕ′′(ū+ c(a))
lx(x|a)− η

ϕ′′(ū+ c(a))
lsx(x|a)

)
.

But, since d(a, ū)< JSR, it follows that W (v(·, a, ū))< JSR+ 2J and since by IR at some

point v(x,a, ū) = ū+ c(a), we have as in the proof of Lemma 6 applied to J = JSR + 2J

that ϕ′′(ū+c(a))
ϕ′′(vPS(x,a,ū))

→ 1, and by Lemma 6

µ

ϕ′′(ū+ c(a))
→ (Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2 , and
η

ϕ′′(ū+ c(a))
→ c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2 ,

and so

vPSx (x,a, ū)→ (Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2 lx(x|a)− c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2 l
s
x(x|a) = vSRx (x,a, ū)

uniformly in x. But then, since each of vPS(·, a, ū) and vSR(·, a, ū) satisfy IR, it follows

that for ū sufficiently large, d(a, ū)< ε and dx(a, ū)< ε, as claimed. �

Proof of Theorem 4 Choose ū∗ such that for ū > ū∗ the conclusion of Lemma 8 holds and

thus, for each a, either d(a, ū)≤ ε, or d(a, ū)≥ JSR.

Now, note that to implement effort 0, a contract that is flat at ū is optimal, and so

d(0, ū) = 0. But, d(·, ū) is continuous, and so, since d(0, ū)≤ ε and since d(a, ū) can never

lie in
(
ε, JSR

)
it follows that d(a, ū)≤ ε everywhere, and we are done. �

A.5. Proofs for Section 8

FOA AND SQUARE ROOT UTILITY. Let x̃ be the smallest point at which the peak of

Faa(·|a′) occurs as a′ varies.

LEMMA 9—FOA: Square Root : Assume CDFC∗. Let µSR(a)> 0. Then,
∫
vSR(x,a, ū)f(x|·)

is quasi-concave with peak at a and is strictly concave on a neighborhood of a whenever∫
ls(x|a)faa(x|a′)≥ 0. This holds under any of the following conditions:
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(i) fs has support contained in [0, x̃],

(ii) ls(0|a)≥ ls(x̃|a),

(iii) for each a′,
∫ x̃

0 l
s(x|a) faa(x|a′)∫ x̃

0 faa(s|a′)ds
dx≥ ls(x̃|a), or

(iv) for each a′, if Faa(x|a′) = Faa(z|a′) with z > x, then fs(x)≥ fs(z).

Recalling that ls is single peaked, conditions (i)–(iii) are successively more general,

where (iii) says that ls at x̃ is no bigger than a particular weighted average of ls on [0, x̃].

Condition (iv) is weaker than (i) but otherwise unranked. Each condition captures a sense

in which fs is larger before the peak in Faa than after.

Proof of Lemma 9 Let us first prove sufficiency of (iii). Fix a and a′. Since Faa(·|a′)> 0

for all interior x, it follows that
∫
l(x|a)faa(x|a′)dx < 0. Thus, since caa ≥ 0 it suffices to

show that
∫
ls(x|a)faa(x|a′)dx≥ 0. But,∫
ls(x|a)faa(x|a′)dx=

∫ x̃

0
ls(x|a)faa(x|a′)dx+

∫
x̃
ls(x|a)faa(x|a′)dx

≥
∫ x̃

0
ls(x̃|a)faa(x|a′)dx+

∫
x̃
ls(x|a)faa(x|a′)dx=

∫
χ(x)faa(x|a′)dx,

where χ(x) equals ls(x̃|a) on [0, x̃] and ls(x|a) on [x̃,1]. But then, since ls(·|a) is quasi-

concave and x̃ is beyond the peak of ls(·|a), χ is decreasing. And since
∫
faa(x|a′)dx= 0

and faa is first positive and then negative, Beesack’s inequality (Beesack (1957)) yields∫
χ(x)faa(x|a′)dx≥ 0.

Clearly (i) implies (iii). To see that (ii) implies (iii) note that since ls is quasi-concave

ls(0|a)≥ ls(x̃|a), if follows that ls(x|a)≥ ls(x̃|a) for all x ∈ [0, x̃] and (iii) follows.

Finally, let us turn to (iv). Note that ωx(x,a′) = faa(x|a′)
faa(ω(x,a)|a) , and consider

W (x|a′)≡
∫ x

0
fs(s)faa(s|a′) +

∫ x̄

ω(x|a)
fs(s)faa(s|a′)ds.

We have W (0|a′) = 0, and for each x ∈ [0, x̂(a′)], that

Wx(x|a′) = fs(x)faa(x|a′)−
faa(x|a′)

faa(ω(x,a)|a)
fs(ω(x|a))faa(ω(x|a)|a′)

= (fs(x)− fs(ω(x|a)))faa(x|a′)≥ 0,

using that x < x̂(a), and so faa(x|a)> 0. Thus,
∫
fs(s)faa(s|a′) =W (x̂(a′)|a′)≥ 0. �
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An Alternative Approach to FOA Concavity of −
∫
ls(x|a)f(x|·) is far from necessary.

For example, since c is convex, it is enough that µPS
∫
lfaa(x|a′)− ηPS

∫
lsfaa(x|a′)≤ 0,

which can be rewritten as
∫
lsfaa(x|a′) ≥ θ

∫
lfaa(x|a′), where θ ≡ µPS

ηPS
=

(Is−1) cac +σ

Ia+ ca
c σ

.

Note that θ is increasing in ca
c , and that if σ ≤ 0, then θ diverges as ca

c →
Ia

−σ . But then,

under any conditions such that
∫
lfaa(x|a′)< 0, we will have the needed concavity as long

as ca
c is large enough. One needs to exercise some care here in constructing examples, since

if ca
c is too large, then Ia + ca

c σ < 0, at which point η is zero.

This approach can also be used to provide conditions under which the solution to PPS

is increasing, allowing the use of standard conditions for the validity of FOA. Since it is

natural for contracts in our setting to violate monotonicity, we do not pursue this further.

Proof of Theorem 5 Since
∫
vSR(x,a)faa (x|â)− caa(â)< 0 at â= a, and is continuous

in â, there is a neighborhood (a − δ, a + δ) and τ > 0 such that
∫
vSR(x,a)faa (x|â) −

caa(â) < −τ < 0 on the neighborhood. Thus, in particular, for any a′ ∈ [a, a + δ], since∫
vSR(x,a)fa (x|a)− ca(a) = 0 and since

∫
vSR(x,a)faa (x|â)− caa(â)<−τ , it follows

that
∫
vSR(x,a)fa (x|a′)− ca(a′)<− (a′ − a) τ and so∫

vSR(x,a)f (x|a)−c(a)−
(∫

vSR(x,a)f (x|a+ δ)− c(a+ δ)

)
>

∫ a+δ

a

(
a′ − a

)
τda′ = τ

δ2

2

and thus, since
∫
vSR(x,a)fa (x|a′)− ca(a′)< 0 for a′ > a, a fortiori,∫

vSR(x,a)f (x|a)− c(a)−
(∫

vSR(x,a)f (x|â)− c(â)

)
> τ

δ2

2

for all â≥ a+ δ, and similarly for â≤ a− δ.

But then, since
∣∣vPS(x,a′, ū)− vSR(x,a′, ū)

∣∣→ 0 uniformly in x and a′, it follows that∫
vPS(x,a′, ū)f

(
x|a′

)
− c(a′)→

∫
vSR(x,a′, ū)f

(
x|a′

)
− c(a′)

uniformly in a′ as ū grows, and so for ū large enough, any action outside of (a− δ, a+ δ)

is dominated by a facing vPS(·, a, ū). And, for ū large enough,
∫
vPS(x,a, ū)faa (x|â)−

caa(â) < −τ2 < 0 on (a − δ, a + δ) and so, since
∫
vPS(x,a, ū)fa (x|a) − ca(a) = 0, by

construction, the unique best response to vPS(·, a, ū) is a, and we are done. �
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APPENDIX B: ONLINE APPENDIX

B.1. Details for Example 1

Recall that the signal technology is given by

x1 x2 x3

a1
3
4

1
6

1
12

a2
1
3

1
3

1
3

a3 0 0 1

It is clear that in both MH, and PS, a1 and as can be implemented by offering ū at all

outcomes for a cost of 1
2 , while for a3 ≤ 5, a3 can be implemented by offering utility 0 at

x1 and x2 and ū+ a3 at x3 for a cost of 1
2(ū+ a3)2.

Let us turn to a2. The minimization problem the principal faces in MH is

min
v1,v2,v3

(
1

3

v2
1

2
+

1

3

v2
2

2
+

1

3

v2
3

2

)
s.t.

1

3
v1 +

1

3
v2 +

1

3
v3 − 1≥ ū

1

3
v1 +

1

3
v2 +

1

3
v3 − 1≥ 3

4
v1 +

1

6
v2 +

1

12
v3

1

3
v1 +

1

3
v2 +

1

3
v3 − 1≥ v3 − a3

where the first constraint is the participation constraint (IR), the second the constraint (IC1)

that the agent does not want to deviate to a1, and the third the constraint (IC3) that the

agent does not want to deviate to a3. Let λ, µ1, and µ3 be the Lagrange multipliers of these

constraints. Then, the relevant first-order conditions are

1

3
v1 − λ

1

3
− µ1

(
1

3
− 3

4

)
− µ3

(
1

3

)
= 0,

1

3
v2 − λ

1

3
− µ1

(
1

3
− 1

6

)
− µ3

(
1

3

)
= 0, and

1

3
v3 − λ

1

3
− µ1

(
1

3
− 1

12

)
− µ3

(
1

3
− 1

)
= 0.

Let us look at case where IR and IC1 bind and IC3 is slack so that µ3 = 0, and then check

when the solution to the relaxed problem in fact satisfies IC3. We then have 5 equations in
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5 unknowns, vis the three just displayed along with IR and IC1 as equalities. The solution

to this system is λ = 2, µ1 = 24
19 , v1 = 8

19 , v2 = 50
19 , and v3 = 56

19 . For IC3 to be slack, we

need ū > v3 − a3, or a3 >
37
19 .

For PS, we have the additional constraint v2 ≤ ū to which we adjoin the Lagrange mul-

tiplier η. Taking the first-order conditions and focusing on the case where IC3 is slack, so

µ3 = 0, we have the 6 equations in 6 unknowns

1

3
v1 − λ

1

3
− µ1

(
1

3
− 3

4

)
= 0,

1

3
v2 − λ

1

3
− µ1

(
1

3
− 1

6

)
+ η = 0,

1

3
v3 − λ

1

3
− µ1

(
1

3
− 1

12

)
= 0

v2 = 1,
1

3
v1 +

1

3
v2 +

1

3
v3 − 1 = 1,

1

3
v1 +

1

3
v2 +

1

3
v3 − 1 =

3

4
v1 +

1

6
v2 +

1

12
v3,

and the solution is λ = 95
32 , η = 31

32 , µ1 = 15
8 , v1 = 5

8 , v2 = 1, and v3 = 35
8 . For IC3 to be

slack, we need v3 − a3 < ū, or a3 >
27
8 .

We thus have CMH(a2) = 1
3

(vMH
1 )

2

2 + 1
3

(vMH
2 )

2

2 + 1
3

(vMH
3 )

2

2 = 50
19 and similarly,

CPS(a2) = 219
64 . Let Bi and Bs be the gross returns to the principal of the various actions.

To generate Figure 1, we note that a2 � as under MH if B2−CMH(a2)≥Bs−CMH(as),

or 1
3 + 1

3x3 − 50
19 ≥ 1− 1

2 , from which we have x3 ≥ 319
38
∼= 8.39 (the pink line). Similarly,

a2 � as under PS if 1
3 + 1

3x3 − 219
64 ≥ 1− 1

2 , or x3 ≥ 689
64
∼= 10.77 (the purple line). Next,

a2 � a3 under MH ifB2−CMH(a2)≥B3−CMH(a3) or 1
3 + 1

3x3− 50
19 ≥ x3− 1

2 (1 + a3)2,

from which a3 ≥
√

4
3x3 + 262

57 − 1 (the red line), and a2 � a3 under PS if B2−CPS(a2)≥

B3 −C(a3), or 1
3 + 1

3x3 − 219
64 ≥ x3 − 1

2 (1 + a3)2, from which a3 ≥
√

4
3x3 + 593

96 − 1 (the

blue line). Finally, a3 is preferred to as if B3−C(a3)≥Bs−C(as), or x3− 1
2 (1 + a3)2 ≥

1− 1
2 , from which a3 ≤

√
2x3 − 1− 1 (the green line). Figure 1 is generated by graphing

each of the most binding equation for each x3. It can be checked that at all relevant a3

for each of the MH and PS cases (that is, along the red and blue segments displayed in

the figure), a3 is large enough that the omitted constraint IC3 does not bind. For example,

for x3 above 10.77, effort is always above 27
8 , and so the omitted constraint is satisfied.

Below 10.77, the green line is below the blue line, and so the binding constraint is driven

by switching from a3 to as. The fact that when a3 is this small, a2 may be more expensive

to implement than the given calculation is then irrelevant as we simply have that an already

ruled out choice is even less attractive than it seemed.
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B.2. Details for Footnote 17

Start from the Example 2. Let us begin by making f have strict MLRP. To do so, let

fε = f + ε
(

1
2 − x

)
, and note that for each interval, fεa = fa is constant, while fε is strictly

decreasing, and so fεa/f
ε is strictly increasing. Now, let us make fε continuous. To do so,

let δ < 1/16 (half the radius of the smallest interval over which f was constant in x), and

consider the function α(z, θ) = 1
2 + 1

π arctan
(
θz + 1

δ−z −
1
z+δ

)
, for z ∈ [−δ, δ], where it is

easy to verify that for any given θ > 0, α is a strictly increasing function with α(−δ) = 0,

α(δ) = 1, and α(−z) +α(z) = 1. It is also easy to verify that as θ diverges, α converges to

a step function which is 0 for z < 0 and 1 for z > 0. For each jump point xJ , and on the

interval (xJ − δ, xJ + δ), let fε,θ = (1− α(x− xJ))fε(xJ − δ) + α(x− xJ)fε(xJ + δ).

Let us first verify that fε,θ is a density. To see this, note that (suppressing a)∫ xJ+δ

xJ−δ
fε,θ(x)dx=

∫ δ

−δ
((1− α(z))fε(xJ − δ) + α(z)fε(xJ + δ))dz

= fε(xJ − δ)
∫ δ

−δ
(1− α(z))dz + fε(xJ + δ)

∫ δ

−δ
α(z)dz

=

(
f−(xJ)− ε

(
xJ − δ−

1

2

))∫ δ

−δ
(1− α(z))dz +

(
f+(xJ)− ε

(
xJ + δ− 1

2

))∫ δ

−δ
α(z)dz

But, ∫ δ

−δ
(1− α(z))dz =

∫ 0

−δ
(1− α(z))dz +

∫ δ

0
(1− α(z))dz

=

∫ 0

−δ
(α(−z))dz +

∫ δ

0
(1− α(z))dz =

∫ δ

0
(α(z))dz +

∫ δ

0
(1− α(z))dz = δ

and similarly,
∫ δ
−δ α(z)dz = δ, and so

∫ xJ+δ
xJ−δ f

ε,θ(x)dx= δ
(
f−(xJ) + f+(xJ)− 2ε

(
xJ − 1

2

))
.

But,∫ xJ+δ

xJ−δ
fε(x)dx=

∫ 0

−δ
fε(xJ + z)dz +

∫ δ

0
fε(xJ + z)dz

=

∫ 0

−δ

(
f(xJ + z)− ε

(
xJ + z − 1

2

))
dz +

∫ δ

0

(
f(xJ + z)− ε

(
xJ + z − 1

2

))
dz

= δf−(xJ)− ε
∫ 0

−δ

(
xJ + z − 1

2

)
dz + δf+(xJ)− ε

∫ δ

0

(
xJ + z − 1

2

)
dz
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= δf−(xJ) + δf+(xJ)− 2εδ

(
xJ −

1

2

)
and so

∫ xJ+δ
xJ−δ f

ε,θ(x)dx=
∫ xJ+δ
xJ−δ f

ε(x)dx, and fε,θ is a density.

Finally, let us check that fε,θ satisfies MLRP. On any given interval (xJ − δ, xJ + δ), we

have

fε,θa

fε,θ
=
fεa(xJ − δ|a) + α (x, θ) (fεa (xJ + δ|a)− fεa(xJ − δ|a))

fε(xJ − δ|a) + α (x, θ) (fε (xJ + δ|a)− fε(xJ − δ|a))

and so since α′ > 0,
(
fε,θa
f

)
x

has strictly the same sign as

(fεa (xJ + δ|a)− fεa(xJ − δ|a)) (fε(xJ − δ|a) + α (x, θ) (fε (xJ + δ|a)− fε(xJ − δ|a)))

− (fεa(xJ − δ|a) + α (x, θ) (fεa (xJ + δ|a)− fεa(xJ − δ|a))) (fε (xJ + δ|a)− fε(xJ − δ|a))

= (fεa (xJ + δ|a)− fεa(xJ − δ|a))fε(xJ − δ|a)− fεa(xJ − δ|a) (fε (xJ + δ|a)− fε(xJ − δ|a))

= fεa (xJ + δ|a)fε(xJ − δ|a)− fεa(xJ − δ|a)fε (xJ + δ|a)

=s
fεa (xJ + δ|a)

fε (xJ + δ|a)
− fεa(xJ − δ|a)

fε(xJ − δ|a)
> 0

establishing MLRP.

Finally, note that if we perturb fs to be strictly concave, as for example fs(x) =
8+κ(x− 7

16)
2

1+κ 1
6144

then fs

f = 1
1+κ 1

6144

8+κ(x− 7
16)

2

1+a
3+ε( 1

2−x)
, and thus tedious algebra shows that

lsx

lε,θx
=

1

1 + κ
1

6144

2κ

(
x− 7

16

)(
1 +

a

3
+ ε

(
1

2
− x
))
−

(
8 + κ

(
x− 7

16

)2
)

(−ε)

1

3
(−ε)

from which
(
lsx
lε,θx

)
x

=s − (6 + 2a+ 3ε− 6xε) which is negative for ε < 2.

B.3. Details for Footnote 20

In Footnote 20 we asserted a few comparative statics results regarding ∆. Here are the

proofs of those assertions. Note first that it is immediate that ∆ decreases in Is, using that

(Is−1)Ia−σ2 > 0. This is intuitive since if fs and f are easier to tell apart, then PS hurts
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less. Let us consider how ∆ changes with Ia. We have

∆Ia =s 2c
(

(Is − 1) (Ia)2 − σ2Ia
)
− (cIa + caσ)

(
(Is − 1)2Ia − σ2

)
=−σ

(
σ (cIa + caσ) + 2ca

(
(Is − 1)Ia − σ2

))
where we know that (Is − 1)Ia − σ2 is strictly positive from Lemma 2 and cIa + caσ is

positive since PS binds. Hence, if σ is positive, then ∆Ia is negative, while if σ is negative,

we have conflicting forces. This is one more example where the sign of σ matters. Finally,

∆σ =s 2 (c(a)Ia + ca(a)σ) ca(a)
(
(Is − 1)Ia − σ2

)
+ 2 (c(a)Ia + ca(a)σ)2 σ

= 2a2Ia (σca + cIa) (cσ− ca + caI
s) =s ca(I

s − 1) + cσ >
ca
Ia
(
Ia(Is − 1)− σ2

)
> 0.

The first inequality follows since PS binds and so c >−σcaIa , and the second by Lemma 2.

B.4. Conditions for Nonbinding PS at Large Effort

In Section 4.1, we showed that if c(a)Ia + ca(a)σ < 0 then constraint PS is slack. We

now provide two sets of sufficient conditions under which such is the case for large enough

values of a. To this end, let lx(a) ≡ minx lx(x|a) and let l̄x(a) ≡ maxx lx(x|a). We have

the following result.

LEMMA 10—Non-Binding PS for Large Effort: Constraint PS ceases to bind for large

enough values of a if either of the following sets of conditions hold:

(i) a ∈ [0,1]; ca/c diverges as a approaches 1; and lima→1 σ(1)/Ia(1)< 0;

(ii) a ∈ [0,∞); either l(·|a) is convex and for sufficiently large a, E[x|a] > E[x|as], or

l(·|a) is concave and there is x̃ ∈ [0,1] such that for all a sufficiently large, x̂(a) ≥ x̃ >
E[x|as]; there is an υ > 0 such that lx(a)

l̄x(a)
≥ υ for all a sufficiently large; and aEa[x|a]→ 0.

Proof Part (i) follows since under the premises, we have lima→1
ca(a)
c(a)

σ(a)
Ia(a) = −∞, and

so is less than −1 for a sufficiently close to 1, which implies that c(a)Ia + ca(a)σ < 0.

Sufficient for lima→1 σ(1)/Ia(1) < 0 is that Ia(1) <∞, for which a bounded likelihood

ratio is sufficient, and σ(1) < 0, which says that when the agent works at her maximum

possible effort, the covariance between l and ls is negative.
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For some intuition for part (ii), note that c convex implies that aca(a)
c(a) ≥ 1, and thus

c(a)Ia + ca(a)σ < 0 as long as σ
aIa <−1. The proof shows that, under the stated premises,

σ(a)
aIa(a) not only is eventually less than −1, but in fact diverges to negative infinity. One ver-

sion of (ii) deals with the case in which l is convex, and the other with the case in which

l is concave and for a large, x̂(a), the point at which fa = 0, is above E[x|as] by a strictly

positive amount. In turn, the ratio condition states that as a diverges, lx(a)

l̄x(a)
remains bounded

away from zero. Since l has been assumed either concave or convex, this involves a compar-

ison of lx(0, a) with lx(x̄, a), where x̄ is the upper bound of the support of f(·|a), and where

we abuse notation if x̄=∞. Finally, we assume that as effort diverges, aEa[x|a]→ 0. It is

easily shown that this holds if E[x|a] is concave in a and bounded.32 Of course, E[x|a] will

be concave if Faa ≥ 0, the convexity of the distribution function condition. It can be shown

that aEa[x|a]→ 0 also holds if E[x|a] is unbounded but grows more slowly than loga.

To prove part (ii) formally, note that

σ(a)

aIa(a)
≥ υ

σ(a)

lx(a)

aIa(a)

l̄x(a)

.

We will show that the numerator of the right hand side is negative for sufficiently large a

and bounded away from zero, while the denominator is positive and converges to zero.

Consider the numerator. Assume first that l(·|a) is convex. Then, from (5), for all a such

that E[x|a]> E[x|as], if we let x̀ be such that F −F s is positive to the left of x̀ and negative

to the right of x̀ we have

σ(a)

lx(a)
≤ lx(x̀|a)

lx(a)

∫
(F (x|a)− F s(x|a))dx≤− (E[x|a]−E[x|as]) .

The last expression is decreasing in a, and strictly negative for sufficiently large a. If instead

l(·|a) is concave, then using (4),

σ(a)

lx(a)
≤ l(E[x|as]|a)

lx(a)
=− 1

lx(a)

∫ x̂(a)

E[x|as]
lx(x|a)dx≤− (x̂(a)−E[x|as])≤− (x̃−E[x|as]) .

32To see this, note that by concavity, 0≤ aEa[x|a]≤ 2
(
E[x|a]−E[x|a2 ]

)
, where the rightmost term goes to

zero, since both E[x|a] and E[x|a2 ] converge to the same finite limit.
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Turning to the denominator, we have

aIa(a)

l̄x(a)
=

a

l̄x(a)

∫
l(x|a)fa(x|a)dx=

a

l̄x(a)

∫
lx(x|a)(−Fa(x|a))dx

≤ a
∫

(−Fa(x|a))dx= aEa[x|a],

where the second inequality is by integration by parts and the inequality uses that

−Fa(x|a)≥ 0. We are thus done since by assumption aEa[x|a]→ 0. �

EXAMPLE 5—Distributions for which PS Ceases to Bind: In each of the following pa-

rameterized families of distributions, constraint PS ceases to bind at high levels of effort

for appropriate choice of E[x|as].
(1) Let F (x|a) be 1−e−xa , let F s be arbitrary, and c be sufficiently convex that aca(a)

c(a) ≥ θ
for some θ > 1 (as for example if c(a) = aθ for any θ > 1).

(2) Fix δ > 0, and let F (x|a) = (x+δ)a

(1+δ)a−δa on [0,1], where δ > 0 ensures that l is bounded.

(3) Let f(x|a) = 1
af

L(x) +
(
1− 1

a

)
fH(x) on [0,1], fH/fL increasing and concave.

(4) As in LiCalzi and Spaeter (2003), let F (x|a) = x+ x−x2
a+1 for x ∈ [0,1] and a ∈ [0,∞).

(5) As in LiCalzi and Spaeter (2003), let F (x|a) = xkea(x−1) for x ∈ [0,1] and a ∈
[0,∞).33

To see this, consider first f(x|a) = 1
ae
−xa (as in Example 3) and let fs be arbitrary. Then,

as before Ia = 1/a2, and similarly,

σ =
1

a2

∫
fs(x)(x− a)dx=

1

a2

(
Efs(x)− a

)
.

Thus,

lim
a→∞

σ

aIa
= lim
a→∞

Efs(x)− a
a

=−1.

But then,

lim
a→1

ca(a)

c(a)

σ

Ia
≤ θ <−1,

33LiCalzi and Spaeter (2003) provide two classes of distributions satisfying MLRP and the convexity of distri-

bution function condition (CDFC) of which this and the previous example are lead examples. For the first class,

it is easy to find conditions under which l is convex, and so our results apply generally. Primitives for l to be

concave or convex in the second class are forbidding.
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and we are done.

Consider now

F (x|a) =
(x+ δ)a

(1 + δ)a − δa

on [0,1]. Then our conditions are satisfied. To see this, note that

f(x|a) =
a (x+ δ)a−1

(1 + δ)a − δa
,

and so

log f(x|a) = loga+ (a− 1) log (x+ δ)− log
(
(1 + δ)a − δa

)
.

Thus

l(x|a) =
1

a
+ log (x+ δ)− (1 + δ)a log(1 + δ)− δa log δ

(1 + δ)a − δa
,

from which l(·|a) is clearly concave, and

lx(x|a) =
1

x+ δ
∈
[

1

1 + δ
,
1

δ

]
and so we can set υ in Lemma 10 (ii) equal to δ

1+δ . It can be numerically checked that

F satisfies CDFC. Hence, E[x|a] is concave in a, and so aEa[x|a]→ 0. Finally, x̂(a) is

defined by

log (x+ δ) =
(1 + δ)a log(1 + δ)− δa log δ

(1 + δ)a − δa
− 1

a

where the rhs converges to log(1 + δ), and so x̂(a) converges to 1. Hence, as long as

E[x|as]< 1, we can take x̃ ∈ (E[x|as],1), and satisfy the relevant condition.

Consider next

f(x|a) =
1

a
fL(x) +

(
1− 1

a

)
fH(x)

where fH/fL is increasing and concave, and note that

l(x|a) =
1

a2

fH(x)

fL(x)
− 1

1

a
+

(
1− 1

a

)
fH(x)

fL(x)

,
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from which

lx(x|a) =
1

a2

(
fH(x)

fL(x)

)
x(

1

a
+

(
1− 1

a

)
fH(x)

fL(x)

)2

from which it is clear that l is concave, since then the top is positive and decreasing in x,

while the bottom is positive and increasing in x. Note also that(
fH(1)

fL(1)

)
x(

1

a
+

(
1− 1

a

)
fH(1)

fL(1)

)2

(
fH(0)

fL(0)

)
x(

1

a
+

(
1− 1

a

)
fH(0)

fL(0)

)2

=

(
fH(1)

fL(1)

)
x(

fH(0)

fL(0)

)
x

(
1

a
+

(
1− 1

a

)
fH(0)

fL(0)

)2

(
1

a
+

(
1− 1

a

)
fH(1)

fL(1)

)2

→

(
fH(1)

fL(1)

)
x(

fH(0)

fL(0)

)
x

(
fH(0)

fL(0)

)2

(
fH(1)

fL(1)

)2

and so we can take the constant υ in Lemma 10 (ii) to be

υ =
1

2

(
fH(1)

fL(1)

)
x(

fH(0)

fL(0)

)
x

(
fH(0)

fL(0)

)2

(
fH(1)

fL(1)

)2

Next, note that

E[x|a] =
1

a

∫
xfL(x)dx+

(
1− 1

a

)∫
xfH(x)dx
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which is clearly concave and bounded and so aEa[x|a]→ 0 as desired. Finally, note from

our expression for l that x̂ is constant, and occurs where fH

fL
= 1, and so the existence of x̃

follows any time E[x|as] occurs to the left of this point.

Next, let F (x|a) = x+ x−x2
a+1 , so that

l(x|a) =

2x− 1

(a+ 1)2

1 +
1− 2x

a+ 1

and so

lx(x|a) =
∂

∂x

2x− 1

(a+ 1)2

1 +
1− 2x

a+ 1

=
2

(a− 2x+ 2)2 .

and

lxx(x|a) =
8

(a− 2x+ 2)3

and so l is convex. Hence we can take the constant υ in Lemma 10 (ii) equal to

υ =
1

2
lim
a→∞

2

(a+ 2)2

2

a2

=
1

2
.

Also, clearly Faa > 0, and so E[x|a] is concave in a and, having finite support, is bounded.

Thus aEa[x|a]→ 0. Finally, x̂= 1
2 , and so x̃ exists as long as E[x|as]< 1

2 .

Next, let F (x|a) = xkea(x−1) so that f(x|a) = xk−1ea(x−1) (k + xa). Then,

log f(x|a) = (k− 1) logx+ a(x− 1) + log(k + ax)

and hence

l(x|a) = x− 1 +
x

k + ax

from which

lx(x|a) = 1 +
k

(k + ax)2



56

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

which is decreasing in x. Thus, we can set υ in Lemma 10 (ii) equal to

υ =
1

2
lim
a→∞

1 +
k

(k + a)2

1 +
k

(k)2

=
1

2

k

1 + k
.

Next,

Faa(x|a) =
(
xkea(x−1)

)
aa

= xkea(x−1) (x− 1)2 > 0

Finally, x̂(a) is the solution to

0 = l(x̂(a)|a) = x̂(a)− 1 +
x̂(a)

k + ax̂(a)
,

from which lima→∞ x̂(a) = 1, and where

x̂a(a) =
x̂(a)

(k + ax̂(a))2 + k
> 0,

and so any E[x|as]< 1 will do.

B.5. A Minimal Effort in the Exponential Example

We have that

CPS(a) =
1

2

((
12 + a2

)2
+ 4a4

)
+ a4 (2a− 1)

(a− 4)2

a4e
1
a − 12a+ 10a2 − 4a3 + 4

,

and so for any α and β, the difference between implementing effort a and implementing as
is

βa−CPS(a)−
(

2β − 122

2

)
.

The green line in Figure 7 plots the set of β and a where this expression equals zero, and

so the principal is indifferent between initiative and as. As can be seen, for β below around

300, the principal is better to implement as than any level of effort under initiative. The

purple line shows the solution to ∂
∂a(βa − CPS(a)) = 0, which gives the optimal effort

to implement as a function of β (a graph shows that CPS is convex). Since the objective

function is supermodular in β and a, optimal effort increases in β. Thus, for any β where it
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𝑎

𝛽

Figure 7.: Initiative vs. Safe. On the green curve, the principal is indifferent between effort

a and the safe project. On the purple curve, she has chosen effort optimally.

is worth implementing initiative, it is worth implementing at least an initiative a little above

2.8.

B.6. Omitted Proofs from Appendix A on Section 7

Proof of Lemma 5 We have that

ϕ′(vPS(x,a, ū)) = λ+ µl(x|a)− ηls(x|a)

and so, multiplying both sides by f(x|a) and integrating yields∫
ϕ′(vPS(x,a, ū))f(x|a)dx= λ− η.

Similarly, multiplying both sides by fa(x|a) and integrating yields∫
ϕ′(vPS(x,a, ū))fa(x|a)dx= µ

∫
l(x|a)fa(x|a)dx− η

∫
ls(x|a)fa(x|a)dx

or ∫
ϕ′(vPS(x,a, ū))fa(x|a)dx= µIa(a)− ησ,

and multiplying both sides by fs(x) and integrating yields∫
ϕ′(vPS(x,a, ū))fs(x)dx= λ+ µ

∫
l(x|a)fs(x|a)dx− η

∫
ls(x|a)fs(x)dx
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or ∫
ϕ′(vPS(x,a, ū))fs(x|a)dx= λ+ µσ− ηIs.

But, from the system of equations∫
ϕ′(vPS(x,a, ū))f(x|a)dx= λ− η∫
ϕ′(vPS(x,a, ū))fa(x|a)dx= µIa(a)− ησ∫
ϕ′(vPS(x,a, ū))fs(x|a)dx= λ+ µσ− ηIs

we obtain

∫
ϕ′(vPS)fs = η +

∫
ϕ′(vPS)f +


∫
ϕ′(vPS)fa

Ia
+
ησ

Ia

σ− ηIs

and so we arrive with a little manipulation at the claimed expressions. �

We claimed in main text that, as a by product of the large ū case, we obtain the convexity

of C , a difficult property to ensure from primitives. To show this we need a few steps. To

begin, note that from the envelope theorem applied to PPS , we have

CPSa (a) =

∫
ϕ(v(x))fa(x|a)dx− µ

(∫
v(x)faa(x|a)dx− caa(a)

)
,

noting that the term in λ drops out using IC , and that a does not enter into PS . We begin

with a key lemma about the derivatives of λ, µ, and η with respect to a.

LEMMA 11—Limit Derivatives of Multipliers: Each of λa
λ , µa

λ , and ηa
λ converges to

zero in ū, and does so uniformly in a.

Proof For given a and ū where PS binds, λ, µ, and η are defined implicitly by∫
ρ(λ+ µl− ηls)f = ū+ c,

∫
ρ(λ+ µl− ηls)fa = ca,

∫
ρ(λ+ µl− ηls)fs = ū,

and so differentiating with respect to a yields∫
ρ′(λa + µal+ µla − ηals − ηlsa)f +

∫
ρfa = ca
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∫
ρ′(λa + µal+ µla − ηals − ηlsa)fa +

∫
ρfaa = caa∫

ρ′(λa + µal+ µla − ηals − ηlsa)fs = 0,

where we use IC to simplify the first equation, and then rearrange so that (λa, µa, ηa) solve

∫
(λa + µal− ηals)ρ′f =

∫
(ηlsa − µla)ρ′f∫

(λa + µal− ηals)lρ′f = caa −
∫
ρfaa +

∫
(ηlsa − µla)lρ′f∫

(λa + µal− ηals)lsρ′f =

∫
(ηlsa − µla)lsρ′f ,

or equivalently, dividing both sides by ϕ′
∫
ρ′f (where we take ϕ′ to mean ϕ′(ū+ c(a))),

and then expressing things in matrix form,


1

∫
l ρ
′f∫
ρ′f

∫
ls ρ′f∫

ρ′f∫
l ρ
′f∫
ρ′f

∫
l2 ρ′f∫

ρ′f

∫
lls ρ′f∫

ρ′f∫
ls ρ′f∫

ρ′f

∫
lls ρ′f∫

ρ′f

∫
(ls)2 ρ′f∫

ρ′f


︸ ︷︷ ︸

M


λa
ϕ′

µa
ϕ′

−ηaϕ′

=


∫

(ηlsa−µla)ρ′f
ϕ′
∫
ρ′f

caa−
∫
ρfaa+

∫
(ηlsa−µla)lρ′f

ϕ′
∫
ρ′f∫

(ηlsa−µla)lsρ′f
ϕ′
∫
ρ′f

 .

Consider first the column vector on the right. Note that∫
(ηlsa − µla)ρ′f

ϕ′
∫
ρ′f

=

∫ (
η

ϕ′
lsa −

µ

ϕ′
la

)
ρ′f∫
ρ′f
→ 0,

using that η
ϕ′ → 0 and µ

ϕ′ → 0, and that as CS show (and is intuitive since ρ′ converges to

a constant over the relevant range) ρ′f∫
ρ′f
→ f . Similarly,

∫
(ηlsa − µla)lρ′f

ϕ′
∫
ρ′f

→ 0 and

∫
(ηlsa − µla)lsρ′f

ϕ′
∫
ρ′f

→ 0.
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Also,

−
∫
ρfaa

ϕ′
∫
ρ′f

=

∫
ρ′Faa

ϕ′
∫
ρ′f

=

∫
Faa
f
ρ′f

ϕ′
∫
ρ′f

=

∫
Faa
f
ξ

ϕ′
→ 0

since the top converges to
∫
Faa which is finite, and the bottom diverges. Finally, since

ϕ′(ρ(τ)) = τ we have ϕ′′(ρ(τ))ρ′(τ) = 1 and thus

caa

ϕ′(ū+ c(a))

∫
ρ′f

=
caa

ϕ′(ū+ c(a))

∫
1

ϕ′′(ρ)
f

=
caa∫

ϕ′(ū+ c(a))

ϕ′(ρ)

ϕ′(ρ)

ϕ′′(ρ)
f

→ 0,

since ϕ′(ρ)
ϕ′′(ρ) →∞, and ϕ′(ū+c(a))

ϕ′(ρ) → 1. Thus, the right side converges to the zero vector.

But, since ρ′f∫
ρ′f
→ f ,

M →M lim ≡

∣∣∣∣∣∣∣∣
1 0 1

0 Ia σ

1 σ Is

∣∣∣∣∣∣∣∣ .
The determinant of M lim is Ia(Is − 1)− σ2 which is strictly positive by Lemma 2. Hence

M lim is invertible, and the unique solution to the system

M lim


τ1

τ2

τ3

=


0

0

0


is τ1 = τ2 = τ3 = 0. But then, for ū large, |M | is also strictly positive, and hence the

solution to the system of equations is continuous as ū diverges. Thus λa
ϕ′ → 0, µaϕ′ → 0, and

ηa
ϕ′ → 0. �

Proof of Lemma 6 Write v(x) where we more properly mean vPS(x,a, ū). Using Lemma

5, start from

η =
−Ia

∫
ϕ′(v(x)) [(fs(x)− f(x|a))]dx+

∫
ϕ′(v(x)) [σl(x|a)]f(x|a)dx

Ia (Is − 1)− σ2
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and integrate by parts and divide by ϕ′′(ū+ c(a)) to arrive at

η

ϕ′′(ū+ c(a))
=

−Ia
∫

ϕ′′(v(x))

ϕ′′(ū+ c(a))
vx(x)(F (x|a)− F s(x|a))dx+ σ

∫
ϕ′′(v(x))

ϕ′′(ū+ c(a))
vx(x)(−Fa(x|a))dx

Ia (Is − 1)− σ2 .

But, by IR and continuity of v(·), we must have v(x) = ū + c(a) for some x. Hence,

since a ∈ [0,1], v(x) ∈ [ū− J, ū+ c(1) + J ] for all x. But then, using CS, Lemma 1,
ϕ′′(v(x))
ϕ′′(ū+c(a)) → 1 as ū diverges, and does so uniformly in a. Thus, uniformly in a,

η

ϕ′′(ū+ c(a))
→
−Ia

∫
vx(x)(F (x|a)− F s(x|a))dx+ σ

∫
vx(x)(−Fa(x|a))dx

Ia (Is − 1)− σ2 ,

where we observe that∫
vx(x)(F (x|a)−F s(x|a))dx=

∫
v(x))(fs(x|a)−f(x|a))dx= ū− (ū+ c(a)) =−c(a)

and
∫
vx(x)(−Fa(x|a))dx = ca(a), and so η

ϕ′′(ū+c(a)) →
c(a)Ia+ca(a)σ
(Is−1)Ia−σ2 uniformly in a. As

a reality check, for the square root case where u =
√

2w we have ϕ′′ = 1, and so this

expression agrees with the one derived for that case.

Continuing, we then have that

lim
ū→∞

λ

ϕ′(ū+ c(a))
= lim
ū→∞

∫
ϕ′(v(x))

ϕ′(ū+ c(a))
f(x|a)dx− lim

ū→∞

(
ϕ′′(ū+ c(a))

ϕ′(ū+ c(a))

c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2

)

and so, since ϕ′′

ϕ′ → 0 uniformly in a, and ϕ′(v(x))
ϕ′(ū+c(a)) → 1 uniformly in a, λ

ϕ′(ū+c(a)) → 1

uniformly in a. This agrees with the square root case, where ϕ′(ū+ c(a)) = ū+ c(a).

Finally,

µ=

∫
ϕ′(v(x))fa(x|a)dx

Ia
+
ησ

Ia
=

∫
ϕ′′(v(x))vx(x) (−Fa(x|a))dx

Ia
+
ησ

Ia

and so

µ

ϕ′′(ū+ c(a))
=

∫
ϕ′′(v(x))

ϕ′′(ū+ c(a))
vx(x) (−Fa(x|a))dx

Ia
+ lim
ū→∞

η

ϕ′′(ū+ c(a))

σ

Ia
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from which, since ϕ′′(v(x))
ϕ′′(ū+c(a)) → 1 uniformly in a, using that

∫
vx(x) (−Fa(x|a))dx =

−ca(a), and using our limiting expression for η
ϕ′′ , we have that uniformly in a,

µ

ϕ′′(ū+ c(a))
→ ca(a)

Ia
+
c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2

σ

Ia
=

(Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2 .

which once again agrees with the square root case.34 The expressions for the multipliers

for vMH are proven in CS by similar techniques. �

We are now ready to prove the following result on the first and second derivatives of C

as ū diverges. Since caa is strictly positive, it will follow from the proposition that C is

eventually convex in a for sufficiently large ū.

PROPOSITION 2—Limits of Derivatives of C : Let Assumption 1 hold. As ū diverges,

then uniformly in a, CPSa (a)
ϕ′(ū+c(a))ca(a) → 1, and CPSaa (a)

ϕ′(ū+c(a))caa(a) → 1.

Proof Note that

Ca(a)

ϕ′(ū+ c(a))ca(a)
=

∫
ϕ(v(x))fa(x|a)dx− µ

(∫
v(x)faa(x|a)dx− caa(a)

)
ϕ′(ū+ c(a))ca(a)

=

∫
ϕ(v(x))fa(x|a)dx

ϕ′(ū+ c(a))ca(a)
− µ

∫
v(x)faa(x|a)dx− caa(a)

ϕ′(ū+ c(a))ca(a)
.

Now,∫
ϕ(v(x))fa(x|a)dx

ϕ′(ū+ c(a))ca(a)
=

−
∫

ϕ′(v(x))

ϕ′(ū+ c(a))
vx(x)Fa(x|a)dx

ca(a)
→
−
∫
vx(x)Fa(x|a)dx

ca(a)
= 1,

and so it is enough to show that the second fraction converges to 0. Note that

0≥
∫
v(x)faa(x|a)dx− caa(a) =−

∫
vx(x)Faa(x|a)dx− caa(a)

≥−max
a,x
|Faa(x|a)|

∫
vx(x)dx−max

a
caa(a)≥−J max

a,x
|Faa(x|a)| −max

a
caa(a)

34As a reality check, note that Is =
∫
lsfs =

∫ (fs
f

)2
f which is convex in the term in parentheses. Hence,∫ ( fs(x)

f(x|a)

)2
f(x|a)dx≥

(∫ fs(x)
f(x|a)f(x|a)dx

)2
= 1. It follows that µ is positive.
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using Lemma 8 and so
∣∣∫ v(x)faa(x|a)dx− caa(a)

∣∣ is uniformly bounded.

So, consider

µ

ϕ′(ū+ c(a))ca(a)
=

µ

ϕ′′(ū+ c(a))
(Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2

ϕ′′(ū+ c(a))
(Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2

ϕ′(ū+ c(a))ca(a)

=
ϕ′′(ū+ c(a))

ϕ′(ū+ c(a))

µ

ϕ′′(ū+ c(a))
(Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2

Is − 1 + σ
c(a)

ca(a)

(Is − 1)Ia − σ2 .

The first fraction converges to 0 by Assumption 1, while the second converges uniformly

to 1 using Lemma 6, and so it is enough that the third fraction has bounded absolute value.

But, the denominator of the third fraction is bounded away from zero, since (Is−1)Ia−σ2

is strictly positive everywhere and continuous, Is is bounded by assumption, and c(a)
ca(a) ≤ 1

since c is convex, and we have established the claimed form of CPSa .

To analyze CPSaa , note from our expression for CPSa , that it follows that

CPSaa (a) =

∫
ϕ′(v)vafa +

∫
ϕ(v)faa − µ

(∫
v(x)faaa − caaa

)
− µ

∫
vafaa − µa

(∫
v(x)faa(x|a)dx− caa

)
,

and we shall be interested in the limiting behavior of CPSaa
ϕ′(ū+c)caa(a) . Note first that the brack-

eted term in the fifth term is finite as argued above, and similarly for the bracketed term

in the third term. But then, since, µ
ϕ′(ū+c) → 0, and µa

ϕ′(ū+c) → 0, we can dispense with

the third and fifth terms without loss. Integrate the second term by parts, and make the

substitution ϕ′(v) = λ+ µl− ηls to arrive at

CPSaa
∼= λ

∫
vafa + µ

∫
valfa − η

∫
lsvafa

+ λ

∫
vx (−Faa) + µ

∫
vxl (−Faa)− η

∫
vxl

s (−Faa)− µ
∫
vafaa.

The term µ
∫
vxl (−Faa)≤ µJ maxa,x |lFaa|, and so disappears on division by ϕ′(ū), and

similarly for η
∫
vxl

s (−Faa). But,
∫
vfa = ca is an identity, and so, differentiating, we
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obtain
∫
vafa = caa−

∫
vfaa = caa +

∫
vxFaa. Making this substitution and cancelling the

two terms involving
∫
vxFaa,

CPSaa
∼= λcaa + µ

∫
valfa − η

∫
lsvafa − µ

∫
vafaa.

Note next that la =
(
fa
f

)
a

= faaf−f2a
f2

and so fla = faa − f2a
f = faa − lfa. Substituting this

in the second term and then cancelling with the last term,

CPSaa
∼= λcaa − µ

∫
vafla − η

∫
lsvafa.

Since for large ū the multiplier λ behaves like ϕ′(ū+ c), we would be done if µλ
∫
vafla−

η
λ

∫
lsvafa→ 0, for which it is enough that µλ

∫
vafla and η

λ

∫
lsvafa each go to zero. Con-

sider the first. Expanding va and then multiplying and dividing by
∫
ρ′f gives that

µ

λ

∫
vafla = µ

∫
ρ′f

∫ (
λa
λ

+
µa
λ
l− ηa

λ
ls +

µ

λ
la −

η

λ
lsa

)
la

ρ′f∫
ρ′f

.

But, since λa
λ and its ilk all converge to 0, and since ρ′f∫

ρ′f
converges to f , the second

integral converges to 0, and so it is enough to show that µ
∫
ρ′f , or equivalently, that

µ
ϕ′′(ū+c(a))ϕ

′′(ū+ c(a))
∫
ρ′f is bounded. But we know from Lemma 6 that∣∣∣∣ µ

ϕ′′(ū+ c(a))
− (Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2

∣∣∣∣→ 0

where the second ratio is independent of ū. Hence it is enough to know that ϕ′′(ū +

c(a))
∫
ρ′f is bounded. But,

∫
ρ′f =

∫
1

ϕ′′(v)f and so we desire to show that
∫ ϕ′′(ū+c(a))

ϕ′′(v) f

is bounded. But, since maxx v
SR(x,a, ū)−minx v

SR(x,a, ū) is finite and independent of

ū and d(a, ū)→ 0, Lemma 1 in CS implies that ϕ
′′(ū+c(a))
ϕ′′(v) → 1 uniformly in x. �

B.7. Examples with CDFC*

The following examples, which satisfy CDFC, also satisfy the condition of Faa being

single peaked and strictly positive at interior outputs, and hence satisfy CDFC*.

EXAMPLE 6: Let F (x|a) = x+ x−x2
a+1 for x ∈ [0,1] and a≥ 0. Then, Faa is single-peaked

with peak at x = 1/2. Let F (x|a) = xkea(x−1) for x ∈ [0,1] and a ∈ [0,∞). Then, Faa is
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single-peaked, with peak at or above k
k+2 . Finally, let F (x|a) = xa+β for x ∈ [0,1] and

a≥ 0, where β > 0. Then, Faa is single-peaked with peak at e−
2

a+β ≥ e−
2
β .

The case F (x|a) = x + x−x2
a+1 is straightforward. If F = xkea(x−1), then Faa =

xk (x− 1)2 ea(x−1). We want to show that this is strictly single-peaked. Since Faa is zero

at x = 0 and 1, it follows that Faa has an interior critical point. It is enough to show that

any such interior critical point is a strict local maximum. But,

faa = xk−1ea(x−1) (1− x)
(
−2x+ k (1− x)− ax2 + ax

)
=s k+ ax− 2x

1− x
≡ j(x,a, k),

and so, since k ≥ 0, where faa = 0, we have 2≥ a (1− x). But then, where faa = 0,

faax = ((k + ax) (1− x)− 2x)x = a−k−2ax−2≤ a−k−2ax−a (1− x) =−k−ax < 0.

Note also that j(·, a, k) is strictly concave, with j(0, a, k) = k > 0, and with j tending to

−∞ as x tends to one. Hence, j(·, a, k) crosses zero once and is strictly decreasing where

it does so. But then, when a is increased, the crossing point moves to the right. Hence the

solution x to j(·, a, k) = 0 is smallest when a is zero and thus x= k
k+2 .

Finally, let F (x|a) = xa+β . Then,

faa(x|a) = xa+β−1 (lnx) (β lnx+ a lnx+ 2) =s − (β lnx+ a lnx+ 2) ,

where the last object has derivative− 1
x (a+ β)< 0. Hence, Faa is single-peaked, with peak

at e−
2

a+β ≥ e−
2
β .

B.8. Existence and Continuity

Our results hinge on PPS having a solution, and hence on the relevant multipliers exist-

ing, and on those multipliers being continuous. This cannot be true with full generality, be-

cause there are well-known counterexamples to existence already in the pure moral-hazard

problem. But, when we restrict attention to utility functions satisfying Assumption 1, then

existence indeed follows for a sufficiently large outside option.

We will prove existence of a solution to PPS with continuous multipliers. The proof for

PMH is a simplified version of the same proof. Consider the problem P̂PS(a, ū) which is

PPS augmented by a bounded payment constraint that v(x) ∈ [0,2ū] for all x. Throughout

this section, we will impose Assumption 1.



66

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

While the space of functions v is ill-behaved, the space of distributions on rewards cross

signals is not. So, let us first move to mechanisms that allow for a randomized reward

following any given signal. A mechanism is thus defined by a transition probability, that

is, a measurable function κ : [0,1]→∆[0,∞), with the interpretation that following signal

x ∈ [0,1], the agent receives rewards according to κ(·|x). A special case is that κ(·|x) is

Dirac at some particular value, a case which will turn out to be central to us.

Following a small twist to an idea of Kadan, Reny, and Swinkels (2017), for given κ, let

π be the measure on ∆([0,∞)× [0,1]) that arises if one first takes x uniform [0,1], and then

draws r according to κ(·|x). LetM be the set of probability measures on ∆([0,∞)× [0,1])

with marginal onto signals equal to the uniform distribution. Note also that by Corollary

7.27.2 in Bertsekas and Shreve (1978), every measure π ∈M is associated with a transition

probability that is defined uniquely up to sets of x of Lebesgue measure zero.

We will thus move our search for an optimal mechanism to the spaceM. To do so, note

that, letting g be the density that is 1 on [0,1], the utility of the agent facing κ of action a is

∫ (∫
rdκ(r|x)

)
f(x|a)dx=

∫ ∫
r
f(x|a)

g(x)
dκ(r|x)g(x)dx=

∫
rf(x|a)dπ(x, r),

and so we can rewrite the constraints in terms of π, and similarly for incentives and the

utility of the outside option. We will take the distance dP between any two distributions as

given by the Levy-Prokhorov metric. This induces the topology of weak convergence.

We will use the following construction repeatedly. Let ω : [0,∞) × [0,1]→ [0,∞) be

measurable, and satisfy that ω(r, x)− r < τ for all r and x. Start from a measure π, and

let π̃ be constructed by first drawing (r, x) according to π, and then replacing r by ω(r, x).

Then, dp(π, π̃)≤ τ . To see this, for any Borel set A of [0,∞)× [0,1], let Aε be the set of

all points within ε of some point in A. Then, π̃(A)≤ π(Aτ ) since for the final realization

to be in A, the initial realization must be within of τ of A, and similarly, π(A)≤ π̃(Aτ )

since any point in A ends up somewhere in Aτ .

LEMMA 12—Distributional Mechanism: Fix ū∗ > 2JSR.Then, ∀(a, ū) ∈ [0, ā]× [ū∗,∞),

an optimal distributional mechanism π̂(·, a, ū) exists, is unique, and is continuous in (a,u).
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Proof We will apply Berge’s theorem. Let

Θ(a, ū) =

π ∈M
∣∣∣∣∣∣∣∣∣∣

∫
rf(x|a)dπ(x, r) = ū+ c(a)∫
rfa(x|a)dπ(x, r) = ca(a)∫
rfs(x|a)dπ(x, r)≤ ū

π ([0,2ū]× [0,1]) = 1

 .

That is, π ∈Θ(a, ū) satisfies IR , IC , and PS , it never gives utility less than 0 or more

than 2ū, and it has the right marginal on signals. Let πSR(·, a, ū) be the distribution as-

sociated with vSR(·, a, ū), and note that since ū∗ ≥ 2JSR, πSR(·, a, ū) ∈ Θ(a, ū), and so

Θ is non-empty. Let (ak, ūk)→ (a′, ū′), and let πk ∈ Θ(ak, ūk). Then, since for k large,

π ([0,4ū′]× [0,1]) = 1, πk is a sequence of measures on a compact space, and so there is a

subsequence along which πk converges to some limit π′. But, all the integrals defining Θ

are of bounded continuous functions on [0,4ū′)× [0,1], and so since πk converges to π′ in

the weak topology, π′ ∈Θ(a′, ū′). Hence, Θ is upper hemi-continuous and compact valued.

Next, let us show that Θ is lower hemicontinuous. Fix (a′, ū′), π′ ∈Θ(a′, ū′), a sequence

(ak, ūk)→ (a′, ū′), and ε > 0. Let us show that for k̂ sufficiently large and for each k > k̂,

there is πk ∈Θ(ak, ūk) such that dP (πk, π′)< 2ε. This is enough, as one can then construct

a subsequence along which πk→ π′.

We begin by modifying π′ so that it never pays near 0 or 2ū′. Draw (r, x) according to

π′, then replace r by (1 − ε′)r + ε′vSR(x,a′, ū′), where ε′ ∈ (0, ε) is chosen so that the

resultant measure, call it π′′, satisfies dp(π′, π′′)≤ ε. Now∫
rf(x|a)dπ′′ = (1− ε′)

∫
rf(x|a)dπ′ + ε′

∫
vSR(x,a′, ū′)f(x|a)dπ′,

and similarly for
∫
rfa(x|a)dπ′′ and

∫
rfs(x)dπ′′. Thus, π′′ ∈Θ(a′, ū′). Since vSR(x,a′, ū′)>

ū∗ − JSR > 1, π′′ never pays less than ε′, and similarly never more than 2ū′ − ε′.
Now, pick x` < xm < xh where ls(x`|a′) = ls(xh|a′). Choose γ > 0 small enough that

for all a within γ of a′

det


∫ x`+γ
x`−γ f(x|a)dx

∫ xm+γ
xm−γ f(x|a)dx

∫ xh+γ
xh−γ f(x|a)dx∫ x`+γ

x`−γ fa(x|a)dx
∫ xm+γ
xm−γ fa(x|a)dx

∫ xh+γ
xh−γ fa(x|a)dx∫ x`+γ

x`−γ f
s(x)dx

∫ xm+γ
xm−γ f

s(x)dx
∫ xh+γ
xh−γ f

s(x)dx


︸ ︷︷ ︸

Y (a)

< 0.
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To construct a distributional mechanism satisfying IR, IC, and PS at (a, ū), we can solve

Y (a)


ψ`(a,u)

ψm(a,u)

ψh(a,u)

=


ū+ c(a)− (1− ε)

∫
rf(x|a)dπ′ − ε

∫
v∗(x,a′, ū′)f(x|a)dx

ca(a)− (1− ε)
∫
rfa(x|a)dπ′ − ε

∫
v∗(x,a′, ū′)fa(x|a)dx

ū− ū′


and take π̃(·, a, ū) as the measure that results when one draws (r, x) according to π′′ and

then modifies any (r, x) with x ∈ xd by adding ψd to r.

Now, the column on the righthand side is arbitrarily close to 0 for (a, ū) close to (a′, ū′),

and so the determinant of the matrix formed by replacing a column of Y (a) with this col-

umn is arbitrarily small, while as a→ a′, detY (a)→ detY (a′)> 0. But then, by Cramer’s

rule (ψ`(a,u), ψm(a,u), ψh(a,u))→ 0. Thus, in particular, for (a, ū) sufficiently close to

(a′, ū′), |ψd(a, ū)| < ε′

2 , and so π̃(·, a, ū) places no weight on payments below 0 or above

2ū. Thus π̃(·, a, ū) ∈Θ(a, ū) and dp(π̃(·, a, ū), π′′)< ε so that dp(π̃(·, a, ū), π′)< 2ε.

Since Θ is non-empty, compact valued, and continuous, and since
∫
ϕ(r)f(x|a)dπ is

continuous in π, we can apply Berge’s theorem to conclude that an optimum exists and that

the set of optima is upper hemicontinuous in (a, ū).

Let π′ be optimal for (a′, ū′), and let κ′ be a transition probability for π′. We claim

that κ′ is degenerate at almost all x. To see this, note that ϕ is strictly convex, and thus

ϕ
(∫
rdκ′(r|x)dx

)
<
∫
ϕ (r)dκ′(r|x)dx, unless κ′ is degenerate. Thus, taking v′(x) =∫

rdκ′(r|x)dx for each x, and noting that replacing the agent’s lottery over utilities at each

outcome by its expectation does not affect incentives, we have that v′ is optimal for (a′, ū′).

Next, assume there is a second optimum π′′ at (a′, ū′) with corresponding v′′ 6= v′. Then the

contract that provides utilty 1
2v
′(x)+ 1

2v
′′(x) at each x is also feasible, and by strict convex-

ity of ϕ, cheaper still. Thus, the optimal solution is unique, where we can let v̂(·, a, ū) be

the optimal contract, and π̂(·, a, ū) the associated distributional contract. Finally, since π̂ is

unique, it follows that the optimum correspondence, which we already know from Berge’s

theorem to be upper hemicontinuous, is in fact continuous. �

Our next tasks are to show that v̂ is characterized by multipliers, and that these multi-

pliers move continuously in (a, ū). The proof of following result is standard (for example,

apply Theorem 1 and problem 7 in Luenberger (1969) Chapter 8) and thus is omitted.
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LEMMA 13—Characterization of v̂: Fix ū∗ > 2JSR. Then, for each (a, ū) with ū≥ ū∗,
v(·) solves P̂PS if and only if it is feasible and there is (λ,µ, η) with η ≥ 0, and

η
(
ū−

∫
v(x)fs(x)dx

)
= 0 such that

ϕ′(v(·)) = λ+ µl(·|a)− ηls(·|a) if ϕ′(0)< λ+ µl(·|a)− ηls(·|a)<ϕ′(2ū), (8)

v(x) = 0 if λ+ µl(·|a)− ηls(·|a)≤ 0, and

v(x) = 2ū if λ+ µl(·|a)− ηls(·|a)≥ ϕ′(2ū).

If η = 0, then v = vMH . If v(x) ∈ (0,2ū) for all x, then λ > 0.

Next we show that an optimal contract only pays at the boundaries with small probability.

LEMMA 14—Payments at Boundaries: Fix τ ∈ (0, 1
2). Then, there is ū∗ such that for all

ū > ū∗ and for all a,
∫
{x|v̂(x,a,ū)∈{0,2ū}} f(x|a)dx < 2τ .

Proof Choose ū∗ large enough such that for ū > ū∗, τ
1−τ ū > JSR. Fix ū > ū∗, and a, and

assume that v̂(·, a, ū) pays 0 with probability τ ′ ≥ τ . Let ζ be the average utility given

when it is not 0. The distribution of utilities under v̂(·, a, ū), which may not be constant

when it is more than 0, is thus a mean preserving spread of the distribution which pays 0

with probability τ ′ and ζ with probability 1− τ ′.
Now, by IR, (1− τ ′)ζ = ū+ c(a), and so

ζ =
ū+ c(a)

1− τ ′
>

ū

1− τ ′
= ū+

τ ′

1− τ ′
ū≥ ū+

τ

1− τ
ū > ū+ JSR.

Thus, v̂ gives utilities that are a mean-preserving spread of those of vSR. Since ϕ′′ > 0,

vSR(·, a, ū), which implements a, is strictly less expensive than v̂(·, a, ū), and so v̂(·, a, ū)

is not optimal, contradiction. Similarly, v̂(·, a, ū) pays 2ū less than τ of the time. �

Let τ∗ = 1
2 minamin{F (x̂s(a)|a),1− F (x̂s(a)|a)}. We will now prove that the multi-

pliers move continuously with (a, ū). Note that τ∗ > 0, since the functions involved are

continuous, and since we have assumed that x̂s is everywhere interior. For each (a, ū) with

ū > ū∗, let λ̂(a, ū), µ̂(a, ū), and η̂(a, ū) be the multipliers associated with v̂(·, a, ū).

LEMMA 15—Continuity of Multipliers: Fix ū∗ ≥ 2JSR and large enough that Lemma

14 applies for τ = τ∗. Then, λ̂, µ̂, and η̂ are continuous at all (a, ū) with ū > ū∗.
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Proof Let (ak, ūk)→ (a′, ū′) where ū′ > ū∗. Then, by Lemma 12, π(·, ak, ūk) converges to

π(·, a′, ū′). To prove that (λ̂(ak, ūk), µ̂(ak, ūk), η̂(ak, ūk)) converges to (λ̂(a′, ū′), µ̂(a′, ū′), η̂(a′, ū′)),

note first that if either or both of µ̂(ak, ūk) or η̂(ak, ūk) diverge, then λ̂(ak, ūk) +

µ̂(ak, ūk)l(x|ak) − η̂(ak, ūk)ls(x|ak) becomes arbitrarily steep to the right of x̂s if

µ̂(ak, ūk) ≥ 0, and arbitrarily steep to the left of x̂s if µ̂(ak, ūk) ≤ 0, and so for k large,

v̂(·, ak, ūk) is interior only on an arbitrarily short interval of one of [0, x̂s] or [x̂s,1],

which is inconsistent with Lemma 14. But, since µ̂(ak, ūk) and η̂(ak, ūk) are bounded,

IR implies that λ̂(ak, ūk) is bounded as well. Thus, along a subsequence if needed,

(λ̂(ak, ū), µ̂(ak, ū), η̂(ak, ū)) converges to some (λ̂′, µ̂′,η̂′). But then, by the sufficiency

part of Lemma 13, the contract characterized by (λ̂′, µ̂′,η̂′) is optimal in P̂PS(a′, ū′). But

then, optima are unique, it must be that (λ̂′, µ̂′,η̂′) = (λ̂(a′, ū′), µ̂(a′, ū), η̂(a′, ū)). �

We are finally in a position to prove existence of a continuous solution to PPS .

THEOREM 6—Existence: Let Assumption 1 hold. Then, there is ū∗ <∞ such that for

all (a, ū) with ū > ū∗, solutions to both PPS and PMH exist. The multipliers characteriz-

ing these solutions are continuous in (a,ū) where ū > ū∗.

Proof We will prove the existence of an optimal solution to PPS and continuity of multi-

pliers that characterize the solution. The proof for PMH is similar. Recall that |vSR− ū|<
JSR, and so we can thus choose ū∗ large enough that for all ū > ū∗, vSR(x,a, ū) ∈
[2JSR,2ū − 2JSR] for all a and x. And, by Lemma 8 for any given ε ∈ (0, J

SR

2 ), there

is ū∗ large enough such that for all ū > ū∗, either d(a, ū)< ε or d(a, ū)> JSR.

Let d̂(a, ū)≡maxx
∣∣v̂PS(x,a, ū)− vSR(x,a, ū)

∣∣. Consider any a where d̂(a, ū)< JSR.

Then, it follows that v̂PS(x,a, ū) ∈ (0,2ū) for all x, and so the multipliers associated

with v̂PS(x,a, ū) also characterize an optimum of PPS which hence exists, and so

v̂PS(·, a, ū) = vPS(·, a, ū) and thus d̂(a, ū) = d(a, ū). Thus, by definition of ū∗, d̂(a, ū)< ε.

Finally, note that d̂(0, ū) = 0, since the optimal solution in P̂PS(0, ū) is to pay ū at all out-

comes which is what vSR also specifies. But then, since d̂ is continuous, and is never in

the interval (ε, J), d̂(a, ū) < ε for all a. But then, for all a, v̂PS(·, a, ū) solves the suffi-

cient conditions for optimality in PPS(a, ū), and hence vPS(·, a, ū) exists and is equal to

v̂PS(·, a, ū), and so by Lemma 15 is defined by continuous multipliers. �
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