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Abstract

In many real-world principal-agent settings, the principal must design incentives to both

induce hard work and to encourage risky initiative instead of safer projects. We provide

conditions such that extreme outputs will be rewarded more and middle outputs less than in

the classic moral hazard setting, giving an alternative explanation for option-like incentives.

We exhibit the structure of optimal contracts when these conditions are not satisfied. Faced

by the need to induce initiative, the principal will tend to ask less of the agent if effort is not

very important, but ask more if effort is important. Effectively, the principal goes big or goes

home.
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1 Introduction

In the classic moral hazard problem, the principal’s only problem is to induce the agent to work

hard. But, in many real world settings, the agent also chooses on what to work. Assume that

GM’s board has decided on an aggressive transition to electric vehicles. Hence, they want two

things from their CEO, Mary Barra. First, as is standard, they want her to work very hard. But,

they also want Barra to favor electric over traditional, and not all of her choices of whether to

do so are observable. For example, while the board can see the timing of plant transitions from

traditional to electric vehicles, a moderate rate of transition could reflect either that Barra was

playing it safe, or that she was aggressively pursuing the strategy, but that stochastic market or

technological considerations hampered a faster transition. Thus, the same set of rewards that

guide her effort choice must also partly guide her degree of initiative in pursuing electric. And,

to the extent that taking more initiative leads to riskier outcomes, GM needs to be aware that

exposing Barra to risk, which is effective at motivating effort, may disincentivize initiative.

Most academics have available “safe” projects that will lead with high probability to publish-

able output. Our employers (and society), however, may prefer that we take on projects that

may turn out to be impossible, but will make a more substantive contribution if successful: the

university wants us to both show initiative in choosing innovative projects, and then work very

hard to make them succeed. And here again, the university can only make a noisy estimate of

whether our research agenda is “safe” or ambitious, while we may know quite well. Hence there is

a clear tension. Providing poor payoffs in the face of low research output is one very effective way

to disincentivize low effort. But “no output” is also the modal outcome for many projects that

push the frontiers. Punishing low output thus incentivizes effort, but disincentivizes initiative.

The need to encourage initiative is not just relevant at the top of the firm, or for employees

for whom innovation is key. Consider a firm motivating a salesperson. Some clients are highly

probable to do some business with the firm, but of limited magnitude. Other clients are more

speculative, but have the potential to make large orders. If the type of client pursued is visible to

the salesperson but not to the firm, then the firm must use its reward structure both to encourage

the pursuit of the right client and to encourage serious effort in doing so. Similar issues arise

when an employee negotiating on behalf of the firm is deciding whether to pursue an easy deal or

push hard for a better one. Organizations benefit from initiative at all levels.

In this paper, we consider a principal who needs to motivate both effort and initiative. We

model a lack of initiative as taking a “safe” action which leads to output which is relatively

unlikely to be either very high or very low. In contrast, taking intiative (declining the safe action)

places the agent in the classic moral hazard setting (Mirrlees (1975), Holmström (1979)) where

effort determines the distribution over outcomes on a risky project. We thus have the need to

encourage initiative while maintaining the full richness of the canonical moral hazard setting. As
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such, our model allows a nuanced understanding of how initiative and effort interact.

We provide a comprehensive analysis of this problem and how it compares to the classic moral-

hazard problem. At a high level, there are two main economic insights. First, under reasonable

conditions, the optimal contract facing the initiative constraint will cross the contract without

the constraint twice, once from above and then once from below. Indeed, in an important class,

the need to induce initiative leads to a more convex compensation schemes. Second, there is a

tendency for the effort implemented to be pushed away from middle levels with the new constraint.

If output is not of very high value, the principal will tend to induce lower effort (or indeed the

safer project) facing the need to induce initiative, but if output is of significant value, then the

principal will induce higher effort given the extra constraint.

The result that incentives tend to convexify when initiative is added to the model reflects

a simple trade-off. When initiative is taken, low outputs become more likely. So, low outputs,

while bad news about effort, are good news about initiative. In the face of these mixed messages,

the principal does not punish low output as harshly as when initiative is not a consideration.

Similarly, medium outputs, while favorable news about effort, are less good news about initiative,

and so rewards are lower than before. Finally, high outcomes are good news about both effort

and initiative, and so are rewarded generously. This suggests a reason why real-world incentive

schemes, such as options-based contracts for CEOs and the compensation of tenured academics,

seem to be steep in the face of success but flatter in the face of failure. Indeed, if the safe project

is sufficiently appealing, then the optimal contract may be non-monotone.1

The fact that the need to motivate initiative leads to contracts that punish failure less harshly

has precedents both in the literature (see below), and in the popular press. We add significant

nuance in two ways. First, we emphasize that the reason why the agent may fail to show initiative

is not just because he is afraid of failure, but also because middling outcomes may be too well

compensated in the contracts that naturally arise when only moral hazard on effort is considered.

The popular wisdom should be amended to state that to encourage initiative, failure should not

be punished too harshly, but neither should mediocrity be too comfortable.

Second, we show that there is an important countervailing force to the property that the con-

tract when initiative is a consideration crosses the contract without this consideration twice, first

from above, and then from below. Encouraging initiative may indirectly discourage or encourage

effort, and the optimal contract must adjust accordingly. We show examples where this overturns

the result that low outputs are treated more generously when initiative needs to be encouraged

and the result that high outputs are treated more generously.

In the face of this, we exhibit a sufficient condition for the intuitive crossing pattern. The

condition is economically interpretable and is satisfied in some very natural settings, but fails

1If the agent could destroy output, then there would be an additional monotonicity constraint on compensation,
a topic that, for considerations of length, we do not explore in this paper.
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in other natural ones. Then, we study a much more general setting. Despite its generality, a

remarkable amount of structure emerges. The two contracts now cross at most three times. A

range of middle outputs are still treated less generously and a range of higher and lower outputs

more generously. Hence if there are only two crossings, they are of the expected pattern. When

there is an extra crossing, its location is governed by the interaction of encouraging initiative

and encouraging effort. If encouraging initiative discourages effort, then to restore incentives

for effort, the principal may end up treating very low outputs more harshly than before. If

encouraging initiative encourages effort, then very high outputs may be treated less generously

than before.

The result that effort tends to be pushed away from the middle is driven by the fact that in

many settings, the cost penalty inherent in the initiative constraint is first increasing and then

decreasing in the induced effort. Some intuition for this is that at low efforts, incentives are weak,

and so there is not much cost in making sure that middle outcomes are not rewarded too well.

But, rewarding middling outputs can be a very effective way to encourage moderate effort, and

hence the initiative constraint binds more harshly. Finally, generously rewarding high outputs

encourages high effort without also making the safer project attractive. Effectively, low effort

levels remove the need to provide strong incentives while high effort levels make it easier for the

principal to distinguish whether initiative was taken. But, because the cost of middle efforts rise

the most, efforts towards the extremes will be favored in the face of the new constraint. The

principal will tend to “go big, or go home” in the face of the need to induce initiative.

An important case is when the agent’s utility of income is square-root. All the relevant

objects then have closed-form expressions in terms of three basic objects that depend only on

the information structure of the problem. The first reflects the informativeness of output about

effort, the second the informativeness of output about initiative, and the third the degree to which

signals that are good news about effort covary with signals that are good news about initiative.

The square-root case is a rich source of examples and insights. For example, it provides a clean

comparison of the relevant multipliers, and a closed form expression for the cost penalty and

hence effort distortion inherent in the new constraint.

The square-root case turns out to be of much deeper importance. For general utility functions,

the equations that implicitly define the optimal contract are intractable. But, for a broad class

of utility functions, when the outside option of the agent is large, the cost-minimizing contract

for any given effort converges to the square-root form.2 Thus, the insights and intuitions from the

square-root case are valid much more generally.

Our detailed results about the form of contracts and effort distortions are unlocked by our

use of the first-order approach which relaxes the full incentive constraint on effort to the local

2Even in the pure moral hazard case, we meaningfully advance Chade and Swinkels (2020) by fully characterizing
the limit contract.
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necessary condition. This is valid only if a solution to the relaxed problem exists, and is feasible

in the full problem.

To analyze existence, we begin by noting that in the square-root case, a closed form solution

exists when the outside option is large enough so that the constraint that payments are non-

negative does not bind. We then leverage our convergence result and tools from Kadan, Reny, and

Swinkels (2017) to show that a solution to the relaxed problem exists with a large outside option

for the same class of utility functions as before. Since optimal contracts can be non-mononote,

no previous result justifying the first-order approach applies here. We provide permissive new

results for our setting.

Our paper is related to a large literature in economics, finance, and accounting on incentive

provision for risk taking and project selection. Indeed, the seminal paper by Grossman and Hart

(1983) on the standard principal-agent problem with moral hazard allows for multidimensional

actions. Thus, for example, one could think about one dimension as effort and the another one

as selecting projects of different risk and return. Indeed they conjecture (see pp.28–29), that in

a setting similar to ours low outputs might be rewarded to induce what we refer to as initiative.

We make precise these conjectures and explore their implications.3

The paper is also closely related to the literature on incentive provision for innovation. Central

to this literature is Manso (2011), which analyzes a two-period principal-agent problem where the

agent controls a two-armed bandit process, and can choose whether to exert effort on a known

arm or explore the other arm. If the agent is risk neutral and exploration is what he calls “radical”

then the optimal contract exhibits tolerance for early failure in the sense that the agent’s wage

for failure in the first period is higher than that for success. It also rewards repeated success

(which is evidence of risk taking) more highly than with pure moral hazard. Ederer and Manso

(2013) and Azoulay, Zivin, Joshua, and Manso (2011) provide experimental and empirical evidence

for the tolerance-for-failure property.4 Our canonical static principal-agent setting with a risk-

averse agent and a continuum of actions and output levels allows a substantially more nuanced

examination of how incentives change when initiative is an issue.

Another related paper is Hirshleifer and Suh (1992), who also extend the principal-agent

problem with moral hazard to allow for project selection. Their setup allows for a richer set of

projects than the binary case we consider. Their most general results are for the case where there

3There is also a strand of literature in which the agent costly acquires information about a risky project before
deciding between that project and a safe alternative. The seminal paper is Lambert (1986), which shows that
without communication the principal distorts project selection, and the distortion can be downward or upwards.
Malcomson (2009) analyzes a more general setting and sheds further light on the distortions induced by information
acquisition and project selection. Other papers in this literature are Barron and Waddell (2003), which combines
theory and estimation of a model with project selection with information acquisition, and Chade and Kovrijnykh
(2016), which analyzes a dynamic version and shows that sometimes the principal rewards “bad news.” Our setting
abstracts from information acquisition before choosing a project, and thus is not closely related to these papers.

4Another contribution is Hellmann and Thiele (2011), who analyze optimal contracts to innovate using a multi-
task model with moral hazard.
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is no risk-return trade-off (projects only differ in their variance) and the distribution of output is

normal (an assumption that is technically problematic). When a risk-return trade-off is present,

they illustrate via examples that there can be downward distortions in both project selection and

effort. Demski and Dye (1999) allows the agent to have private information about the mean and

variance of the projects. Under the restriction to compensation schemes that have a quadratic

functional form, they find that at the optimal contract the agent underreports the mean of the

project chosen. Our setting abstracts from private information, but imposes no restrictions on

the set of contracts.5

Holmström and Costa (1986) shows that in the presence of career concerns the agent has

incentives to take less risk than the principal desires.6 Under some conditions, the optimal contract

protects the agent against low outcomes, thus having an “option-like” shape. We derive a related

insight without career concerns.7

The organization of the paper is as follows. Section 2 lays out the model. Section 3 presents

a simple example to illustrate the two main insights. Section 4 derives the optimality conditions

that any solution to the problem must satisfy, and illustrates them with the case in which the

agent’s utility of income is the square-root function. Section 5 provides a comprehensive analysis

of the shape of optimal compensation schemes. Section 6 examines the effort distortions induced

by initiative, and illustrates that the distortions can be large. Section 7 derives mild conditions

on the agent’s utility of income under which solutions converge to the square-root case as the

outside option rises. Section 8 discusses existence and when the solution to the relaxed problem is

a solution to the full problem. Section 9 concludes. Appendix A contains central omitted proofs

and calculations. Appendix B contains the formal development of the existence material. Online

Appendix C contains ancillary material.

2 Model

The model is a straightforward extension of the standard principal-agent problem with moral

hazard. A principal (she) seeks to hire an agent (he). If the agent accepts, then he makes two

choices. First, he faces a choice of projects, where we will term one “safe” and the other “risky,”

a choice of terminology that we will justify shortly. If he chooses the safe project, which we write

as as, then effort does not matter, and output is given by a continuous differentiable density fs

5Other papers with project selection and moral hazard are Sung (1995), who analyzes a related problem un-
der linear contracts, and Dittmann, Yu, and Zhang (2017), which calibrates a principal-agent problem and finds
empirical support for protecting executives from bad losses and for convex contracts.

6For a recent contribution with career concerns, see Laux (2015), who derives a CEO’s optimal compensation
scheme when pay is restricted to a combination of equity and stock options.

7In our setup, the agent is tempted to take less risk than the principal wants. There is also a complementary
literature where the opposite is true: contracts are designed to temper the agent’s desire to take risk. See, for
example, Georgiadis, Barron, and Swinkels (2020) and Biais and Casamatta (1999) and the references therein.
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on some interval of the positive reals. If he chooses the risky project, which is what we mean by

taking initiative, then effort does matter, with f(·|a) being the density on output x ∈ [0, x̄] given

effort level a ∈ [0, ā], where x̄ and ā are finite, with f > 0 and twice-continuously differentiable.8

We take f to have the usual structure of the moral hazard problem. In particular, l(x|a) ≡ fa(x|a)
f(x|a)

has the (strict) monotone likelihood ratio property, MLRP, which is that l(·|a) is strictly increasing

for each a. We assume that the support of f(·|a) does not depend on a, and that the support of

f s is a subset of the support of f(·|a).9 This rules out that certain outcomes are sure evidence

that the agent either chose the safe project or chose a non-desired effort level.

To justify our “safe” versus “risky” terminology for the projects, on the support of f(·|a),

let ls(x|a) ≡ fs(x)
f(x|a) be the likelihood ratio on the safe versus the risky project given effort a and

outcome x. We assume that for each a, ls(·|a) is strictly single peaked, with ls(·|a) strictly less

than one at the extremes of the support of f(·|a). This implies that for each a, f(·|a) − f s(·)
is first strictly positive, then strictly negative, and then again strictly positive. So, when the

agent takes initiative, there is less weight on intermediate outcomes and more weight on extreme

outcomes than when the agent takes the safe project. To keep things interesting, we assume that

for a sufficiently large, E[x|a] > E[x|as].
The agent’s utility is additively separable in income and effort, where an agent with income w

who exerts effort a has utility u(w)−c(a). We assume u is strictly increasing, strictly concave and

twice differentiable, and that c is increasing, convex and twice differentiable with c(0) = ca(0) = 0.

Taking the safe project incurs effort disutility equal to 0.

The principal can see only output, observing neither whether initiative was taken nor the

choice of effort. A contract thus specifies a wage for each output x. As is standard, we will

work instead with the utility from income that the agent receives, letting v(x) be the utility from

income following output x. Let ϕ = u−1 give the cost to the principal of inducing any given

utility, so that the principal’s outlay at outcome x is ϕ(v(x)).

Conditional on initiative, the principal values the effort of the agent according to some increas-

ing concave function B. An example we use below is B(a) = α+ βE[x|a], so that β is the market

price of output, and α reflects the fixed costs or benefits to the principal of employing the agent.

The net payoff to the principal when effort is a and the contract is v is B(a) − E[ϕ(v(x))|a].

We also let B(as) be the value the principal places on the safe action as, where once again,

B(as) = α+βE[x|as] will be a common example. As usual, we analyze the principal’s problem in

two steps: first minimizing the cost of inducing a given action, and then using the resulting cost

function to find the profit-maximizing action.

Note that the safe project can be induced by paying ū at all outcomes, and hence costs ϕ(ū).

Turning to the interesting case, fix a, and consider the problem of inducing the agent to take

8Where convenient in examples, we relax various of these assumptions.
9When we intend a relationship to be strict, we say so. Throughout, we discard limits of integration and

arguments of functions where they are obvious. The symbol x =s y means that x and y have strictly the same sign.
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initiative and then choose effort level a. The cost minimization problem is

min
v

∫
ϕ(v(x))f(x|a)dx (PFull)

s.t.

∫
v(x)f(x|a)dx− ū− c(a) ≥ 0,

a ∈ arg max
a′

∫
v(x)f(x|a′)dx− c(a′), and∫

v(x)f(x|a)− c(a)−
∫
v(x)fs(x)dx ≥ 0.

The first constraint is the participation constraint that the agent prefers to accept the contract

than to take his outside option. The second is the incentive-compatibility constraint that condi-

tional on taking initiative, the agent prefers action a to any other action. These two constraints

are the usual ones in the standard principal-agent problem with moral hazard. The final constraint

reflects that the agent is better off to take initiative than the safe project.

For much of our analysis, we make two simplifications to this program. For convenience, we

assume that IR binds at the optimum. This is automatic if u is unbounded below, and in cases

like u(w) =
√
w if the outside option is sufficiently large.10 More substantively, we only check the

first-order condition on the agent’s effort choice rather than the full set of incentive constraints.

Doing so gives us a tight characterization of optimal contracts. Later we provide conditions under

which the first-order approach (FOA) is valid in our setting.11

We thus consider the relaxed problem

min
v

∫
ϕ(v(x))f(x|a)dx (PPS)

s.t.

∫
v(x)f(x|a)dx− ū− c(a) = 0, (IR)∫

v(x)fa(x|a)dx− ca(a) = 0, and (IC)

ū−
∫
v(x)f s(x)dx ≥ 0, (PS)

where the participation constraint IR is now an equality, the incentive-compatibility constraint

IC is relaxed to local optimality, and the initiative (project-selection) constraint PS is simplified

using IR. Let CPS(a) be the value of this program. If one discards the constraint PS, one has the

standard relaxed moral hazard problem (Holmström (1979), Mirrlees (1975)). Let PMH be this

problem, with value CMH(a).

10If u is unbounded below and IR is slack, then removing a small constant from v leaves the incentive and
project-selection constraints satisfied and saves the principal money.

11We also address existence of an optimum.
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We consider two settings. In the first, which with some abuse of notation we refer to as PS,

initiative is unobservable. The principal chooses a ∈ [0, ā] to maximize B(·) − CPS(·), and then

induces initiative if and only if B(a)− CPS(a) ≥ B(as)− ϕ(ū). In the second, which we refer to

as MH, initiative is observable and contractible: the principal can either insist on as or forbid it.

Hence the principal solves the same problem but with CMH playing the role of CPS .

3 A Simple Example

Before diving into the formal analysis, let us see the main economic forces at play in a simplified

example. We focus on two main economic impacts of the need to motivate initiative. First, for

any given effort, high and low outputs are rewarded more generously, but middle outputs less

generously. Second, effort choices will often be distorted away from “middle” effort levels in PS

compared to the observable initiative benchmark MH, either towards the safe project or towards

a higher one. The principal goes big or goes home.

Example 1 Let u(w) =
√

2w. There are four actions a1, a2, a3, and as and three outputs, x1,

x2, and x3. The agent plays it safe with as or exerts initiative with ai, i = 1, 2, 3. The action as

yields x2 with probability one. If the agent exerts initiative, the probability distribution of output

is as follows:

x1 x2 x3

a1 3/4 1/6 1/12

a2 1/3 1/3 1/3

a3 0 0 1

The monotone likelihood ratio property holds across a1, a2, and a3, but as is not ranked. The

middle output x2 becomes more likely as one moves from a1 to a2 but less likely as one moves

from a2 to a3. Thus, mediocre performance is a positive signal that the agent exerted medium

versus low effort, but a negative signal that the agent exerted high versus medium effort.12 The

disutility of effort is ai for i = 1, 2, 3, and 0 for as. We take a1 = 0, a2 = 1, and vary a3. Similarly,

we take x1 = 0, x2 = 1, and vary x3. The agent’s reservation utility is ū = 1.

As described in Section 2, in both MH and PS, a1, a2, and a3 are unobservable. In MH the

principal faces a pure moral hazard problem over a1, a2, and a3, but can simply require or forbid

the agent to take as. In PS the principal also cannot observe whether the agent took action as.

We begin with the optimal contracts that implement each action in each informational setting.

Either as or a1 is optimally implemented in either MH or PS by setting utility to ū at all outputs.

Implementing a3 similarly involves setting utility to 0 at x1 or x2 and to ū+ a3 at x3.

12This example is easily modified so that a3 sometimes generates a worse outcome than as, consistent with our
interpretation of as as the agent playing it safe.
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𝑎3 in PS 
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𝑎3
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2

Figure 1: Distortions in Effort. The figure depicts the regions in which the different actions
are optimal under problem PS and under problem MH. In Region 1, effort is distorted upwards
from a2 to a3. In Region 2, effort is distorted from a2 to as.

Let us turn to a2 in MH, and focus on values of a3 where it is the deviation to a1 that binds

rather than the deviation to a3. The optimal contract is (see Online Appendix C.1 for details)

vMH
1
∼= 0.42, vMH

2
∼= 2.63, and vMH

3
∼= 2.95,

where vMH
i is the utility of income following outcome xi. This contract has cost 2.63.

Now, consider implementing a2 in PS, and continue to focus on values of a3 where only the

downward deviation binds. Unlike in MH, no more than ū = 1 can be given at x2, otherwise the

agent will switch to as. Instead, rewards above ū must be concentrated solely on x3, which is

good news about both effort and initiative. Because these rewards occur less often, they must

in utility terms be larger, and because the agent is risk averse, this is more expensive to the

principal. Indeed, the optimal contract is now

vPS1
∼= 0.63, vPS2 = 1, and vPS3

∼= 4.38

at a cost of 3.42. Compared to MH, the optimal way to induce initiative and effort in PS involves

lower payments at middle outcomes, and higher payments at low and high outcomes. A major

topic of this paper is to understand when this pattern emerges.

Because a2 becomes more expensive to implement while the other actions do not, there will be

a tendency to switch away from a2 in PS compared to MH. Figure 1 compares the optimal effort

levels implemented in these problems as a function of x3 and a3.13 In many cases, the principal

13The principal is indifferent between as and a2 in MH along the pink line and between a2 and a3 along the red
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throws her hands up and now implements as despite its lower gross returns. But, interestingly,

in other cases, the principal replaces a2 by the higher effort a3.

The cost of a2 rose in PS because the frequently arising signal x2 is good news about effort

but bad news about initiative, and so the signal is “conflicted.” No such conflict arises following

a3. Another goal in what follows is to understand when higher efforts lead to less conflicted

information, and hence an impetus towards implementing higher effort levels in PS.

4 Solving the Optimization Problems

We now analyze the general model. Our task is to understand the conditions under which the two

main economic insights illustrated by the example are robust. Problem PFull is general but does

not allow us to say much about either optimal compensation or the resulting cost to the principal.

Thus we move to PMH and PPS , where the first-order approach allows a tractable analysis.

Let λ ≥ 0, µ, and η ≥ 0 be the Lagrange multipliers associated with the participation,

incentive, and initiative constraints in PPS . Then the solution is pinned down by

ϕ′(v(·)) = λ+ µl(·|a)− ηls(·|a), (1)

for almost all x, which differs in structure from the optimality condition in PMH by the presence

of the last term.14 Below, we tackle whether solutions to these problems exist and are feasible in

the full problem, but for now we assume both are true.

Denote the solution to PPS by vPS(·, a, ū), with multipliers λPS(a, ū), µPS(a, ū), and ηPS(a, ū),

and the value of the problem by CPS(a, ū). The corresponding solution and value in PMH are

vMH , λMH , µMH , and CMH . If vMH satisfies constraint PS, then it solves PPS , and ηPS(a, ū) = 0.

4.1 The Square-Root Utility Case

When the agent’s utility for income is u(w) =
√

2w, then vMH and vPS and the associated

multipliers have particularly transparent and tractable forms. This will allow a more nuanced

examination of the crossing properties of vMH and vPS , and will be a continuing source of examples

and insight as we move forward. This case is also foundational for our understanding of the case

with a large outside option in Section 7.

Under square-root utility, the constraints become linear in the multipliers, which simplifies

line. She is indifferent between as and a3 along the green line in either problem. She is indifferent between as and
a2 in PS along the purple line and between a2 and a3 along the blue line.

14The result is exactly what one would expect from Lagrangian methods (for example, from a careful application
of Theorem 1 and problem 7 in Luenberger (1969) Chapter 8), but for completeness, we provide an elementary
proof in Online Appendix C.2.
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the problem. It is well-known that for given a the multipliers characterizing vMH are

λMH = ū+ c and µMH =
ca
Ia
, (2)

where Ia ≡
∫
l2f is the Fisher Information of x about a. To understand vPS , we need two further

information-theoretic objects. The first is σ ≡
∫
llsf , the covariance of ls and l. The second is

Is ≡
∫

(ls)2 f , the information in x about whether as was chosen or a.

When PS binds, vPS is characterized by

λPS = λMH + ηPS , µPS = µMH +
ηPSσ

Ia
, and ηPS =

cIa + caσ

(Is − 1)Ia − σ2
, (3)

where (Is−1)Ia−σ2 > 0 because it is a particular variance (see Lemmas 2–3 in Appendix A.1).15

The form of ηPS has intuitive content. The numerator is proportional to the amount by which

constraint PS is violated at vMH . The denominator measures how easily one can adjust incentives

independently of the attractiveness of the safe action.16 Unambiguously, λPS > λMH when PS

bites and thus ηPS is strictly positive. The sign of µPS −µMH is the same as the sign of σ, which

is a primitive. For some intuition about this result, note that when one adds the term −ηPSls to

vMH then outputs where ls is high are reduced compared to outputs where ls is low. If σ > 0,

then this lowers incentives for effort, and so µPS must rise to reestablish IC. Conversely if σ < 0

then µPS must fall to reestablish IC. Appendix A.1 shows conditions for σ negative, a case that

will be of special interest.

5 Comparing Compensation Schemes

Let us now turn to the relative shapes of vMH and vPS . Say that vPS is higher-lower-higher (HLH )

if for given a, vPS − vMH crosses zero exactly twice, and is first strictly positive, then strictly

negative, and then strictly positive. In our leading example, vPS is HLH. Thus, vPS is more

lenient towards low outputs, less tolerant of mediocre outputs and more rewarding of excellent

outputs than is vMH . Given that the safe action creates outputs that are concentrated towards the

middle, this seems the intuitive result of needing to encourage initiative while retaining incentives

for effort. Indeed, the first part of this pattern, that when the principal wants the agent to engage

in a risky project they must be tolerant of failure is long accepted in the field, with a leading

reference being Manso (2011), and a large literature following.

In this section, we do three things. First, we present an economically natural condition on

the statistical structure of the problem under which HLH in fact holds. Second, we show why

15Note that ū does not enter into µPS or ηPS , and enters additively into λPS , and so since ls and l are bounded,
the contract vPS is positive for all a for ū sufficiently large, and similarly for vMH .

16Formally, the denominator measures how far the equations that pin down the multipliers are from being colinear.
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some such condition is needed for such a result, provide some simple examples where HLH fails,

and provide intuition for the countervailing force that has been ignored by the literature to date.

Finally, we explore a substantially more general class of information structures. In this class we

show that there are at most three crossing. If there are two, then HLH holds. When a third

crossing appears, then depending on the primitives, we have that vPS is either LHLH or HLHL

(in the obvious notation) and so punishes either very low outputs or very high outputs compared

to vMH . In the first case, we have invalidated the “tolerance for failure” result that is common

in the literature and seems so intuitive. In the second case, we invalidate the equally intuitive

“exceptional rewards for exceptional performance” result.

We begin our analysis with a preliminary result about the crossing properties of vPS and vMH .

Lemma 1 (At Least Two Crossings) For each a and ū where η > 0, vPS and vMH cross at

least twice.

The proof is in Appendix A.2, but the idea is very simple. If the contracts do not cross at all,

then the higher one provides strictly more utility to the agent than the lower one, contradicting

that both satisfy IR with equality. And, if they cross only once, then the one that crosses from

below provides strictly stronger incentives for effort, contradicting that they both satisfy IC.

5.1 Optimality of HLH Contracts

The intuition that vPS is HLH is in fact correct in many settings. The following theorem shows

that one sufficient condition is that if one rescales output such that lx(·|a) = 1, then ls is strictly

concave. This is automatic if ls is concave and l is convex. But, in the more usual case where

l is concave, it is a statement that ls is more concave than l. See Appendix A.2 for details, an

alternative formulation, and a class of examples.

Theorem 1 (Primitives for HLH ) Fix a 6= as where η > 0, and assume that ls(l−1(·|a)|a) is

strictly concave. Then vPS is HLH.

The structure that low outputs are punished less harshly than without project selection,

middle outputs are rewarded less generously, and high outputs are rewarded even more generously,

resonates with real-world phenomena (see Manso (2011) for a related discussion). Harkening back

to the examples in the introduction, CEOs often have generous severance packages, options that

are worth little under mediocre firm performance, and what is often thought of as excessive

compensation when the firm thrives. The generous severance package in particular is not what

the standard moral hazard problem would predict. Nor under reasonable assumptions on the

structure of the likelihood ratio would one expect such extreme rewards for success. But, it is this

pattern of compensation that is most effective when the CEO needs to be motivated to both work

12



hard and pursue strategies that have considerable upside potential but might fail spectacularly.

Similarly, the compensation of tenured academics involves considerable downside protection and

large rewards for exceptional impact.

To see the proof, observe that l is a strictly increasing function of x and so vPS − vMH has

the same sign as ϕ′
(
vPS

)
− ϕ′

(
vMH

)
and hence when l(x|a) = τ the same sign as

D(τ) ≡ λPS − λMH + (µPS − µMH)τ

η
− ls(l−1(τ)).

This is strictly convex under the premise that ls(l−1) is strictly concave, and so can only cross

zero twice, first from above and then from below. But then by Lemma 1, vPS is HLH.

When utility is square-root we can considerably sharpen this result. In this case v and ϕ′

coincide, and so under the premise of Theorem 1, vPS−vMH is strictly convex. Thus vPS is equal

to vMH plus a convex function. This convexification can be very strong; Appendix A.2 shows a

well-behaved class of examples in which vPS is higher at low outputs than at middle outputs.

5.2 Beyond Two Crossings

The argument proving Theorem 1 suggests that if ls(l−1) changes from concave to convex multiple

times, then D can cross zero multiple times as well. And, there are many natural examples where

the rescaled ls is not concave. Concavity fails whenever f s has less than full support, which is

entirely plausible, as the whole point of playing it safe is to avoid bad outcomes at the cost of

also giving up on good ones. Concavity also fails if the rescaled ls looks like a truncated normal

distribution, or is decreasing and convex on its support. Because of this, it is very easy to build

examples where HLH fails. Here are two.

Example 2 (Punishing Failure) For given τ ∈ (0, 1), let f = 1−τ−a on [0, 1/8], f = 1+τ−a
on (1/8, 1/4], f = 1 + a/3 on (1/4, 1], and fs = 8 on [3/8, 1/2], with a ∈ (0, 1− τ) and u =

√
2w.

This is the limit of examples in which f is continuous, l is strictly increasing, and the rescaled ls

is strictly concave on its support.17 Appendix A.2 verifies that vPS − vMH is LHLH.

Example 2 is particularly troubling, because it contradicts the received wisdom that encour-

aging risk involves being gentler in the face of failure. Here, very low outputs (those below 1/8)

are punished more harshly in PS than in MH. The core of this example is that because ls is

strictly positive only where l is strictly positive, encouraging initiative by setting η strictly posi-

tive discourages effort. Because of this, incentives at places where they do not encourage the safe

project must be adjusted to become stronger via a larger µ, and in this example the effect is

strong enough at outcomes below 1/8 so as to violate HLH.

17See Online Appendix C.3 for details.
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Example 3 (Punishing Success) Let f(x|a) = e−x/a/a for x ∈ [0,∞) and a ∈ [0,∞). If

chooses as, then output is distributed according to fs(x) = e−(x−1) on [1,∞). Let u =
√

2w.

Then, as Appendix A.2 verifies, for all relevant effort levels, vPS − vMH is HLHL, and so very

high outputs are less generously rewarded than in vMH .

Example 3 contradicts the intuition that encouraging risk involves especially high rewards

in the case of spectacular success. Here, when the principal encourages initiative by setting η

positive, she also strengthens the agent’s incentives to take effort. To restore IC, µ falls, and the

the principal reduces compensation at high outputs.

It is tempting at this point to conclude that there is no clear relationship between vPS and

vHM . But, while the proof of Theorem 1 provides a recipe book for building examples with any

number of crossings, the situation is in fact much more hopeful. In what follows, we will exhibit

mild primitives under which (i) there are at most three crossings, (ii) when there are three

crossings, whether LHLH or HLHL holds depends in an intuitive way on whether addressing the

project selection constraint makes satisfying IC harder or easier, and (iii) when there are two

crossings, HLH continues to hold.

Say that ls is semibellshaped (SBS ) if when output is rescaled so that l is linear, ls never

changes from concave to convex before its peak, never changes from convex to concave after its

peak and is never linear on the support of fs. Formally, fix and suppress a, let [x`, xh] be the

support of fs and let x̃ be the maximizer of ls. Then, ls is SBS if there is x` ≤ x1 ≤ x̃ ≤ x2 ≤ xh
such that ls(l−1(·)) is strictly concave on [l(x1), l(x2)], is otherwise convex, and is strictly convex

on [l(x`), l(xh)]\[l(x1), l(x2)]. See Figure 2 for examples and a counterexample, and recall that

Appendix A.2 provides an alternative formulation.

Theorem 2 (SBS Implies At Most Three Crossings) If ls is SBS, then vPS−vMH changes

sign at most three times. If there are three crossings, then vPS is LHLH if µPS > µMH and HLHL

if µPS < µMH .

When µPS > µMH then addressing project selection makes it harder at the margin to provide

incentives for effort. At an intuitive level, this will be true if outputs that are likely under the safe

project become more likely as effort is increased. But, when µ is raised, rewards at low outcomes

are pushed down, and, as Example 2 shows, this effect can be strong enough to cause very low

outputs to be punished relative to vMH . But, vPS is HLH after this. Thus, the traditional wisdom

of tolerating failure is overturned, but in a disciplined manner. Similarly, when µPS < µMH , then

addressing project selection relaxes IC. To restore IC, some very high outcomes may be rewarded

less generously than before. As mentioned, in the square-root case, these two cases are pinned

down by the sign of the covariance σ.

Our intuition is that for academics, the sort of work that results from playing it safe is also

quite common when one takes initiative and works hard but happens to have limited success.
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(a) (b)

(c) (d)

Figure 2: SBS Examples and a Counterexample. Some examples of ls(l−1), in green, and of(
(λPS − λMH + (µPS − µMH)τ

)
/η, in purple, as functions of τ . In (a), fs has full support and

so SBS is satisfied despite fs(x`) > 0. The green line is first convex, then concave until past the
peak, and then convex again. Where the purple line is above (below) the green line, vPS − vHM
is positive (negative). In this example, the purple line slopes down (µPS − µMH < 0), and vPS

is HLHL. Example (b) satisfies SBS, being convex up to the first jump, strictly concave between
the jump points, and convex from the second jump point on. Because the purple line slopes up
(µPS − µMH > 0), the pattern is LHLH. In (c) SBS is also satisfied, but the purple line happens
to be high enough that the pattern is HLH. Example (d) violates SBS (there is no way to choose
the requisite x2), and the purple line shows an example where the pattern is HLHLHL.

Hence, at an intuitive level, encouraging initiative, which involves lower rewards for middling

publications, discourages effort. So, if the reward structure of academics is not HLH, it will

be LHLH, and truly miserable output will be punished. An example is summer money that is

contingent on presenting a plausible research agenda, where the inability to do this basic task

corresponds to a very low output.

The proof in Appendix A.2 establishes what is evident from the figure. When ls is SBS, no

configuration of the purple line can cross the green line more than thrice, where if the purple line

is upward sloping and there are three crossings, then as in panel (b), the ordering is LHLH, while

if the purple line is downward sloping as in panel (a), then the ordering is HLHL.

While the theorem allows for as many as three crossings, the case of two crossings remains

possible. The next result shows that under a mild condition HLH holds whenever this is so. The

condition says that while ls(l−1) need not be convex, it does lie above the average of its endpoints.

This is satisfied trivially when fs is zero at its endpoints.18

Proposition 1 (SBS Plus Two Crossings Implies HLH ) Assume that ls(l−1(·)) lies above

18It fails if ls(l−1) is strictly positive at one endpoint, but has both slope and value zero at its other endpoint.
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the line ls connecting (l(0), ls(0)) to (l(x̄), ls(x̄)), and somewhere strictly. If SBS holds but vPS −
vMH nonetheless crosses zero only twice, then vPS is HLH.

The idea is that under the premise if vPS − vMH is negative at both ends, then it is negative

everywhere, violating Lemma 1. But then, under SBS, if there are only two crossings, HLH must

hold. An open question of economic interest is to understand primitives distinguishing the two

and three crossing cases.

6 Effort and Initiative: Distortions

Besides the comparison of the shapes of the compensation schemes, we would also like to shed

light on the effort distortions that can be traced to the need to induce initiative. We stress that

signing distortions in effort is notoriously difficult in problems with moral hazard.

To see how the need the initiative problem interacts with the importance of effort to the

principal, consider a setting where the benefit of effort to the principal is indexed by τ ∈ [0,∞).

In particular, let B(a, τ) = α(τ)+β(τ)E[x|a], where α is increasing in τ and β is strictly increasing

in τ , with β(0) = 0 and limτ→∞ β(τ) = ∞. We will compare the optimal actions for each τ in

problems MH and PS. Let aMH(τ) and aPS(τ) be the optimal efforts to induce, conditional on

not inducing as, in problems MH and PS respectively.19

Define ∆(a) ≡ CPS(a)−CMH(a) as the cost penalty that is imposed from the extra constraint

PS. In the square-root utility case (see Appendix A.3)

∆ =
1

2

(
c+ ca

σ
Ia

)2
Is − 1− σ2

Ia

, (4)

which depends on the information theoretic objects of the problem and the disutility of effort and

its derivative. For some intuition, recall from the discussion of ηPS that the expression in the

numerator reflects the amount by which PS is violated by vMH , and the denominator reflects the

amount by which the compensation scheme must be distorted from vMH to reestablish PS.20

Now, note that in our discrete example in Section 3, ∆ is single-peaked, first increasing at

low effort levels, and then decreasing. In examples, we consistently arrive at a ∆ which is strictly

single-peaked over the relevant range of effort levels. Here is one such example.

Example 4 (Cost Penalty in Example 3) Let c = a2. Then, Appendix A.3 shows that for

19Because B is strictly supermodular, aMH and aPS are single-valued almost everywhere, so we will treat them
as functions, breaking ties in favor of, for example, the largest optimal action for given τ .

20Online Appendix C.4 shows that ∆ decreases in Is and increases in σ. When σ is positive, ∆ decreases in Ia

while if σ is negative, we have conflicting forces.
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Figure 3: Cost Penalty. The cost penalty is decreasing in a for all relevant effort levels.

a ≤ 2, action as dominates a, while for a ≥ 4, ∆ = 0. In between, (4) reduces to

∆ =
(a(4− a))2

a2

2a−1e
1
a − 1− (2−a)2

a2

,

which (see Figure 3) is strictly decreasing in a and hence strictly single-peaked.21

Since single-peakedness of ∆ is our common finding in examples, it is worth exploring what

happens to effort under PS versus MH when ∆ is strictly single-peaked.22 Our next theorem

answers this question. Recall that τ indexes the value of effort to the principal. Note that for any

τ where the principal induces as in MH or where ∆(aMH(τ)) = 0, she trivially induces the same

effort in PS, since her prefered alternative remains available at the same cost, while the costs to

implement other efforts are at least weakly higher.

Theorem 3 (Effort Distortions) Assume that ∆ is strictly single-peaked where it is strictly

positive, and that CMH and CPS are differentiable where ∆ > 0. Then, there is τ̂ such that for

all τ , aPS(τ)− aMH(τ) has the same sign as τ − τ̂ and strictly so if ∆(aMH(τ)) > 0 and aMH(τ)

is interior.

Figure 4 provides intuition when the marginal cost functions are strictly increasing (the proof

in Appendix A.3 does not rely on this property). The theorem captures in a precise way what we

mean by “go big or go home.” When effort is not very important to the principal, she responds

to the initiative problem by either lowering the amount of effort she asks of the agent or simply

21In this example, the magnitude of ∆ is quite small and effort is either distorted upwards or to as. Appendix
A.3 provides a (carefully constructed) example where ∆ is large and effort distortions are large in both directions.

22Primitives to guarantee single-peakedness of ∆ would be desirable, but are complicated, because even in the
square-root case, it is hard to disentangle the behavior of the information-theoretic objects.
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Figure 4: Distortions. When ∆ is single peaked, then the marginal cost of effort CMH
a crosses

CPSa from below. As τ is increased, the marginal benefit curve Ba moves to the northeast. The
point τ̂ is determined when Ba goes through the intersection of CMH

a and CPSa . For higher τ ,
optimal effort is higher in PS than MH (go big) while for lower τ , optimal effort is lower in PS
than MH (go home).

switching the agent from taking initiative to the safer project. But, when effort and initiative are

important to the principal, she responds to the project selection problem by continuing to induce

initiative but increasing the effort that is asked of the agent.

It is a common observation that in a variety of settings including investment banking, consul-

tancy, law firms, and academia, success comes to those who exercise initiative, work at an extreme

level, and are lucky. The extreme effort has been explained in a variety of ways including, for ex-

ample, career concerns. The theorem provides a complementary explanation: by asking extreme

effort of the agent, the principal finds it easier to distinguish whether initiative is being taken,

which eases the impact of the project selection constraint.

Even when ∆ is not single-peaked, we can take the more modest step of asking whether at

high levels of effort constraint PS ceases to bind. To see why this is useful, consider a case where

constraint PS binds at low effort levels but not at high ones. If so, there must be a region where

the marginal cost of inducing effort is lower with constraint PS than without it.23 This provides

an impetus in the direction of going big for some range of τ , that is, of the principal optimally

choosing higher effort in PS than in MH. In Online Appendix C.5, we derive two sets of conditions

under which PS indeed ceases to bind for high effort levels, and provide a set of natural examples

that have appeared in the moral-hazard literature.

23That is, if aL < aH satisfy CPS(aL) > CMH(aL) but CPS(aH) = CMH(aH), then CPSa < CMH
a over some

interval between aL and aH .
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7 High Stakes

Outside of the square-root utility case, the equations describing the multipliers are forbiddingly

complex. Despite this, everything we learned in the square-root case generalizes to a large class of

utility functions when the agent’s reservation utility is sufficiently large. In particular, the intuition

based on the information-theoretic objects highlighted above extends to this larger class.

Formally, we build on Chade and Swinkels (2020) (henceforth CS) and show that in a class

of utility functions the optimal contracts, and hence the behavior of costs, converge in a strong

sense to those in the square-root case as ū grows large. Of course, for this exercise to be relevant,

the principal has to want to employ the agent when ū is large. Thus, while we focus on the

cost-minimization problem of implementing each level of effort (a problem that is parametrized

by ū), in the background we are considering a sequence of economies where ū grows, but so does

the benefit of effort B to the principal. Hence, the stakes are high, in that both the agent has a

good outside option and the principal places large value on his services.

Let A = −u′′/u′ be the coefficient of absolute risk aversion, and let P = −u′′′/u′′ be the

coefficient of absolute prudence. As in CS we will make the following assumption.

Assumption 1 As w →∞, u→∞, u′ → 0, A/u′ → 0, and (3A− P ) /u′ → 0.

As CS show, equivalent to this assumption is that ϕ has domain with least upper bound ∞,

and that as utility goes to ∞, ϕ′ → ∞, ϕ′′/ϕ′ → 0, and ϕ′′′/ϕ′′ → 0. These assumptions hold

with appropriate parameter restrictions for the HARA utility functions, but fail for u(w) = logw,

since ϕ′′′/ϕ′′ = 1 for all levels of utility.

Let vSR(·, a, ū) be the optimal contract implementing effort a with outside option ū with

square-root utility.24 Our next theorem establishes that under Assumption 1, vPS(·, a, ū) and

vSR(·, a, ū) become arbitrarily close both in level and slope as ū grows.25 To this end, let

d(a, ū) ≡ sup
x

∣∣vPS(x, a, ū)− vSR(x, a, ū)
∣∣ , and dx(a, ū) ≡ sup

x

∣∣vPSx (x, a, ū)− vSRx (x, a, ū)
∣∣

be the maximum differences between vPS(·, a, ū) and vSR(·, a, ū) in value and slope.

Theorem 4 (Convergence of Compensation Schemes) Under Assumption 1, for each ε >

0, there is ū∗ <∞ such that for all a and ū > ū∗, d(a, ū) ≤ ε and dx(a, ū) ≤ ε.

There are two moving parts to the proof. First, regardless of ū, the optimal compensation

scheme stays within a fixed band around ū. Second, given that ϕ′′′/ϕ′′ → 0, it follows that ϕ′′

24That is, vSR is defined by (1), and depending on whether or not constraint PS binds at the solution to PMH ,
by the multipliers given in (2) or (3).

25This is a useful extension of what is shown in CS, who show that ratios of multipliers converge, but do not
show the limiting form of the contract.
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becomes essentially constant over the relevant range of utilities as ū grows. But, in the square-

root case ϕ′′ is a constant and so the two optimization problems become increasingly similar. See

Appendix A.4 for details.26

8 Existence and the Validity of FOA

Two issues that we have not addressed so far are whether the relaxed problem PPS has a solution,

and whether its solution also solves PFull (that is, whether the first-order approach is valid). In

this section, we first discuss some results on feasibility for general utility functions. Then, we turn

to the square-root case, where existence is trivial, and where the explicit solution allows us to

produce quite general conditions for the validity of FOA. Finally, building on Section 7, we show

existence and feasibility for a large class of utility functions when the stakes are high.

In some settings, we will show that the solution to PPS is a solution to PFull for some but

not all actions. To see that this is of value, note that CPS is a lower bound on the true cost

of implementation at all effort levels. Hence if B is such that B(·) − CPS(·, ū) is maximized at

an effort level where feasibility holds, then the same effort remains optimal facing the true cost

function and the economics of the situation are indeed driven by the solution to PPS .

8.1 General Utility Functions

For general utility functions, there are several instances in which we can justify the validity of

replacing all the incentive constraints for effort by IC. First, if f(x|·) is linear, then no matter

the structure of the contract, the agent’s expected utility from income is linear in effort, and so

satisfying the first-order condition implies satisfying global incentive compatibility (recall that c is

convex). This provides a tractable and economically relevant class of examples. Indeed, Example

2 is one such. Second, in some settings, one can show that the solution to the relaxed problem

is increasing in x, in which case off-the-shelf conditions such as the convexity of the distribution

function condition (CDFC ) establish the validity of the first-order approach. As an example of

this approach recall from Section 6 that in many settings, PS ceases to bind at some effort a0,

and so vPS is monotone at a0. Hence, if ls is continuous with bounded slope, vPS will continue

to be monotone for an interval to the left of a0.27 Finally, in examples such as the exponential

setting in Example 3, it is easy to numerically check feasibility by brute force.

26In Online Appendix C.7 we also show that for ū large, both CMH and CPS are convex, and so solutions to the
principal’s first-order conditions on the choice of effort characterize optima.

27If CDFC holds strictly, then at the lowest a at which vPS is monotone, the agent’s payoffs are strictly concave
in effort, and so they remain concave for a further interval to the left of this point. A similar point applies to the
conditions of Jewitt (1988).
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8.2 Square-Root Utility

In the square-root utility case, existence of a solution to PPS is trivial. Let us turn to the validity

of FOA. If the principal uses the contract vSR(·, a, ū), then the utility of the agent who takes

action a′ is

V (a′) ≡ µPS
∫
lf(x|a′)− ηPS

∫
lsf(x|a′)− c(a′),

where µPS , ηPS , l and ls are evaluated at a. We would like to show that V is quasi-concave with

peak at a. Indeed, to facilitate our high-stakes analysis in the next section, we will ask that in

addition, V is strictly concave on a neighborhood of a.

Our main approach is to look for conditions on the information structure of the problem under

which each of the three terms in V is concave, and one term strictly so. Recall that CDFC is

the condition that Faa is positive. Say that F satisfies CDFC ∗ if for each a′, Faa(·|a′) is single-

peaked and strictly positive except at its endpoints. Examples satisfying CDFC commonly satisfy

CDFC ∗ (see Online Appendix C.8).

Under CDFC ∗,
∫
lf(x|·) is strictly concave. Assume also that a is such that µSR > 0.28 Then

the first term in V is strictly concave, while −c is concave. So, V will have the required concavity

if −
∫
lsf(x|·) is concave, or equivalently,

∫
lsfaa(x|a′) ≥ 0 for all a′. This is not immediate since

ls is non-monotone. But, note that faa is positive before Faa reaches its peak. Thus,
∫
lsfaa will

be positive as desired if fs has “enough” of its mass before the peak of Faa. Lemma 9 in Appendix

A.5 gives a number of conditions formalizing “enough.” Starting from any F satisfying CDFC ∗,

Lemma (9) allows easy construction of densities fs such that FOA is valid.

Of course, for V to be quasi-concave, it need not be that all three terms are concave. For

example, since −c is concave, it is enough that the sum of the first two terms is concave. In

Appendix A.5, we explore this approach, and show that if ca/c is large enough, then this is indeed

true. Thus, if c = aβ/β, then FOA is valid when β is large enough. Similarly, one can simply

take caa large enough to make V strictly concave at any critical point. Each of these exercises

imply that ca and c, which appear in the multipliers, are large for any given a > 0, and so such

an exercise would be most relevant in a setting where as ca and c got large, so did the benefit to

the firm of effort via B.

8.3 High Stakes

Consider the setting of Section 7. Theorem 6 in Appendix B establishes that for u satisfying

Assumption 1, a solution to two relaxed problems PPS and PMH exist when ū is sufficiently

large. The proof is novel, but builds on Kadan, Reny, and Swinkels (2017).

Now, let us turn to the validity of FOA. We have shown that for any given a, under a

28This is equivalent to (Is − 1) ca + cσ ≥ 0 and so is an assumption on primitives.
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variety of primitives
∫
vSR(x, a, ū)f(x|·) is quasi-concave with peak at a and is strictly concave

on a neighborhood of a. The following theorem closes the loop and shows that when this holds,

vPS(·, a, ū) also implements a for large enough ū.

Theorem 5 (FOA: High Stakes) Fix a and assume that
∫
vSR(x, a, ū)f(x|·) is quasi-concave

with peak at a and is strictly concave on a neighborhood of a. Then under Assumption 1, for ū

large enough, vPS(·, a, ū) is feasible and hence optimal.

The proof is in Appendix A.5. The idea of the proof is that under the premise, the payoffs to

the agent facing vSR are strictly concave near a, and strictly negative for a′ further away from

a. But then, since vPS − vSR converges to 0 uniformly, the same two properties are true for vPS ,

and thus a is the unique best response to vPS .

9 Conclusion

In many settings, the principal’s problem is not just to get the agent to work hard, but also to

work on the right things. We explore a setting which differs from the classic moral hazard problem

only in that the agent can “play it safe” by choosing a project that avoids extreme outcomes.

This provides a simple model that has nuanced roles for both initiative and effort and allows a

detailed comparison of the settings in which initiative is or is not observable.

The need to induce initiative has significant economic implications. Two main insights arise.

First, under a simple condition on likelihood ratios, contracts will tend to be “more convex”

when initiative must be induced: low outcomes are punished less harshly, middle outcomes are

rewarded less generously, and high outcomes are rewards more generously than without the extra

constraint. But, while the condition on likelihood ratios is simple and satisfied in many examples,

there are also sensible examples where it fails. When it does, the conventional wisdom that failure

should be treated leniently when initiative is important can be overturned, as can the intuition

that success should be treated more generously. We identify the economic force driving these

departures, and then, under a more permissive yet intuitive condition, pin down the relative

behavior of the compensation schemes.

Second, the addition of the new constraint often adds a single-peaked function to the cost of

implementing effort. When this is true, there is a sharp prediction for the effort the principal

will induce compared to what she would do in the classic moral-hazard problem. If the principal

has relatively low value for effort, she will lower induced effort. But, when the principal values

output highly, she will raise induced effort. At an intuitive level, asking more effort of the agent

creates a larger probability of outcomes that are good news about both effort and initiative, and

this relaxes the problem of the principal in rewarding both things simultaneously.
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For the case of square root utility, we provide explicit expressions for the relevant objects. They

are driven by information-theoretic objects related to the Fisher information, but generalized to

this setting. For a large class of utility functions, moreover, the solution in the square-root case

also drives the solution when the outside option of the agent is substantial. Finally, in this setting,

we provide a novel proof that the relaxed problem using the first-order approach indeed has a

solution, and provide primitives under which the first-order approach is valid.

Our results speak to several current issues of organizational design. For example, it suggests

that decision-making authority over initiative might be usefully separated from decision-making

over effort. Indeed, consider Ford Motor Company’s recent reorganization separating the electric

vehicle initiative from the internal combustion arm of the firm. One way of rationalizing this

decision is that it allows Ford to create very strong incentives for effort on issues like cost control

and quality in the well-understood internal combustion area, while creating incentives for initiative

in the much more fluid electric vehicle space.

As a second example, consider a firm that wishes to create an environment in which individuals

who need work-life balance can thrive. If career concerns are the issue, then the firm can attempt

to mitigate the problem by policies such as forbidding email exchanges outside of normal working

hours and mandating minimum vacation periods, which are indeed increasingly common. But,

if the issue is distinguishing initiative from playing it safe, then firms need to think hard about

improving their ability to detect initiative without inducing extreme effort levels.

At a technical level, we take some useful steps towards understanding moral-hazard problems

in which the agent has more actions available than a one-dimensional choice of effort. We expect

that with square-root utility, information-theoretic objects analogous to those we exploit will

continue to play a large role, and that the link between the square-root case and a much larger

set of utility functions as the outside option grows large will persist.

Regarding future research, each of the above examples of organizational design calls for further

modeling, as in each case the organizational response involves changes in the information structure.

It would also be interesting to better understand when the effects of the need to induce initiative

are large, and when they are small. Moreover, in our model the agent has no private information

about the distribution over outcomes given the various actions. But, a CEO knows a lot about

the challenges and opportunities facing her firm, faculty know if they have a great but risky idea

available or are going through a less creative period, and a salesperson knows a lot about the

likely outcome of aggressively pursuing a more favorable deal with a given customer. Exploring

the interaction of the forces we have identified here with this private information seems of first-

order interest. Finally, another topic for future research is to understand how the need to motivate

initiative affects dynamic interactions between a principal and an agent.
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A Appendix A: Properties of the Optimal Contract

A.1 Proofs for Section 4

Details for Square-Root Utility Case. We start with the following preliminary lemma.

Lemma 2 (Sign of Is − 1− σ2

Ia ) The expression Is − 1− σ2

Ia is strictly positive for all a.

Proof Define ζ(x, a) ≡ 1 + σ
Ia

fa(x|a)
f(x|a) −

fs(x)
f(x|a) , noting that

∫
ζf = 0. Since − fs(·)

f(·|a) is strictly

quasi-convex, with interior minimum at some x̃ for each a, while fa(·|a)
f(·|a) is strictly monotone, it

follows that regardless of the sign of σ
Ia , ζ(·, a) is either strictly increasing to the right of x̃ or

strictly decreasing to the left of x̃, and so is not everywhere zero. Hence,
∫
ζ2(x, a)f(x|a)dx > 0.

But, using that (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc,∫
ζ2(x, a)f(x|a)dx =

∫ (
1 +

σ

Ia
fa(x|a)

f(x|a)
− fs(x)

f(x|a)

)2

f(x|a)dx

=

∫ (
1 +

(
σ

Ia
fa(x|a)

f(x|a)

)2

+

(
fs(x)

f(x|a)

)2
)
f(x|a)dx

+ 2

∫
σ

Ia
fa(x|a)

f(x|a)
f(x|a)dx+ 2

∫ (
− fs(x)

f(x|a)

)
f(x|a)dx

− 2

∫
σ

Ia
fa(x|a)

f(x|a)

fs(x)

f(x|a)
f(x|a)dx

= 1 +
σ2

Ia
+ Is + 0− 2− 2

σ2

Ia

= Is − 1− σ2

Ia
,

and we are done. �

Lemma 3 (Solution Square Root Utility) Let u(w) =
√

2w. Assume the constraint that v ≥
0 does not bind. If c(a)Ia + ca(a)σ ≤ 0, then the solution to the pure moral hazard problem PMH

solves PPS, and the multipliers are λMH = ū+c(a) and µMH = ca(a)
Ia , while if c(a)Ia+ca(a)σ ≥ 0,

then PS binds, and the multipliers are

λPS = λMH + ηPS, µPS = µMH +
ηPSσ

Ia
, and ηPS =

c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2
.

Proof Note that ϕ(û) = û2/2, and so ϕ′(û) = û. Thus, we can replace

v(x) = ϕ′(v(x)) = λ+ µl(x|a)− ηls(x|a)
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in the constraints to arrive, in the case where all three constraints bind, but the constraint that

v ≥ 0 does not, at the system of equations∫
(λ+ µl(x|a)− ηls(x|a)) f(x|a)dx = ū+ c(a)∫

(λ+ µl(x|a)− ηls(x|a)) fa(x|a)dx = ca(a)∫
(λ+ µl(x|a)− ηls(x|a)) fs(x)dx = ū.

This can then be rewritten as

λ− η = ū+ c(a)

µIa − ησ = ca(a)

λ+ µσ − ηIs = ū

to which it can easily be verified the solution is as claimed, where by Lemma 2, ηPS =s c(a)Ia +

ca(a)σ. The multipliers for PMH are derived similarly. Finally, note that the value to the agent

of taking the safe action facing vMH is

ū+ c(a) +
ca(a)

Ia

∫
l(x|a)fs(x)dx = ū+ c(a) +

ca(a)

Ia
σ(a),

and so if c(a)Ia + ca(a)σ ≤ 0 then vMH solves PPS . �

Lemma 4 (Negative σ: Sufficient Conditions) If l(·|a) is convex then sufficient for σ(a) < 0

is that E[x|a] > E[x|as]. If l(·|a) is concave then sufficient for σ(a) < 0 is that E[x|as] < x̂(a).

Proof Consider first the case that l is convex. Note that since ls is single peaked, F − F s is first

positive and then negative, and let x̀ be such that F −F s is positive to the left of x̀ and negative

to the right of x̀. Then,

σ(a) =

∫
l(x|a)fs(x|a)dx =

∫
l(x|a) (fs(x|a)− f(x|a)) dx (5)

=

∫
lx(x|a) (F (x|a)− F s(x|a)) dx

≤ lx(x̀|a)

∫
(F (x|a)− F s(x|a)) dx

= lx(x̀|a) (E[x|as]− E[x|a]) < 0,

where the second equality uses that
∫
lf =

∫
fa = 0, and the third integrates by parts. The

inequality uses that convexity of l and the sign pattern of F − F s together imply that lx(x̀|a)−
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lx(x|a) =s F (x|a)− F s(x|a).

Now assume that l(·|a) is concave. Then by Jensen’s inequality,

σ(a) =

∫
l(x|a)fs(x)dx ≤ l(E[x|as]|a), (6)

and so sufficient for σ < 0 is that l(E[x|as]|a) < 0, or equivalently, E[x|as] < x̂(a). �

A.2 Proofs for Section 5

At Least Two Crossings. We now prove that vPS − vMH crosses at least twice.

Proof of Lemma 1 Since both contracts satisfy IR, vPS and vMH must cross at least once.

Assume they cross exactly once, where, for example, vMH crosses vPS from below. Then, since

by IR ,
∫ (
vMH(x)− vPS(x)

)
f(x|a)dx = 0, and since fa

f is increasing, it follows from an inequality

in Beesack (1957) that

0 <

∫ (
vMH(x)− vPS(x)

)
f(x|a)

fa(x|a)

f(x|a)
dx =

∫
vMH(x)fa(x|a)dx−

∫
vPS(x)fa(x|a)dx

which is inconsistent with IC being satisfied for both vPS and vMH . We conclude that vPS and

vMH cross at least twice. �

Rescaling Output and the Function ls(l−1(·|a)). Consider the function ls(l−1(·|a)) which

has domain [l(0|a), l(x̄|a)]. This is the function that arises when one rescales output such that

l(·|a) is the identity. Let us first establish that this is strictly concave if and only if lsx/lx is strictly

decreasing. This follows since

(ls(l−1(τ |a)))τ =
lsx(l−1(τ |a)|a)

lx(l−1(τ |a)|a)
, and thus (ls(l−1(τ |a)))ττ =

(
lsx
lx

)
x

l−1
τ (τ |a) =s

(
lsx
lx

)
x

.

Similarly, ls is semibellshaped if and only if ls(l−1(·|a)) does not shift from strictly concave to

strictly convex anywhere before the peak of ls nor from strictly convex to strictly concave anywhere

beyond the peak. Thus, SBS holds if (1) lsx/lx is strictly quasiconcave on [x`, x̃] and is strictly

quasiconvex on [x̃, xh] and (2) if x` > 0 and fs(x`) > 0 then lsx/lx is strictly decreasing on [x`, x̃]

while if xh < x̄ and fs(xh) > 0 then lsx/lx is strictly decreasing on [x̃, xh].

For an example, let fs be uniform on [0, x̄]. Then one can show that
(
fs

f

)
x(

fa
f

)
x


x

=s fxfaxx − faxfxx.

Thus, necessary and sufficient for lsx/lx to be strictly decreasing is that fxfaxx − faxfxx < 0.
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Equivalently, |fx| is log-submodular. In the spanning case where f = (1− a)fl + afh,

fxfaxx − faxfxx = flxfhxx − fhxflxx,

and so sufficient is that fl is strictly convex and strictly decreasing and fh is strictly convex and

strictly increasing.

If f s has less than full support, then under the same conditions, ls is semibellshaped because

it is convex on its support. In general ls will be semi-bellshaped if |fx| does not change from

log-submodular to log-supermodular before the minimum of f , or from log-supermodular to log-

submodular after the minimum of f .

A Non-Monotone vPS. We asserted in main text that vPS can be decreasing for low outputs.

To see this, note that when ls is differentiable, since lsx(0) > 0, a sufficient condition for vx(0) < 0

is µPS < 0. But, substituting from (3) and simplifying, µPS =s ca(a)(Is − 1) + c(a)σ. So for

example, let f(x|a) = (1−a)f`(x) +afh(x), where fh
f`

is increasing, and let c(a) = a2, noting that

since f is linear in a, there is no issue about the validity of the first-order approach. One can

show that µPS is negative at a = 1 if and only if∫
(2fs − f` − fh)

fs

fh
dx < 0.

Thus, consider fs = 6x(1 − x), fh = bxb−1, f` = dxd−1 on [0, 1]. Note that for b > d, fs is

single-peaked, while f is single-troughed, and so our condition that fs crosses f first from below

and then from above is satisfied. It is easily checked numerically that µPS(1) < 0 for b ∈ [2, 2.2],

and d ∈ [.2, 5], and hence µPS < 0 for a sufficiently close to 1.

Details for Example 2. Note first that

σ =

∫ 1/2

3/8

8

1 + a
3

1

3
dx =

1

a+ 3

while

Ia =

∫ 1/8

0

(−1)2

1− τ − a
dx+

∫ 1/4

1/8

(−1)2

1 + τ − a
dx+

∫ 1

1/4

(
1
3

)2
1 + a/3

dx =
1

4 (a+ 3)

τ2 + 4a− 4

−a2 + 2a+ τ2 − 1
,

and so
σ

Ia
=

1
a+3

1
4(a+3)

τ2+4a−4
−a2+2a+τ2−1

=
4
(
1 + a2 − 2a− τ2

)
4− τ2 − 4a

,

where when a < 1− τ , both top and bottom are positive.
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But, on [0, 1/8], l = −1/(1− τ − a), and ls = 0, and so

vPS − vMH =s 1 +
σ

Ia
l − ls = 1 +

4
(
1 + a2 − 2a− τ2

)
4− τ2 − 4a

−1

1− τ − a
= −τ τ + 4

4− τ2 − 4a
< 0.

Similarly, on (1/8, 1/4]

vPS − vMH =s 1 +
4
(
1 + a2 − 2a− τ2

)
4− τ2 − 4a

−1

1 + τ − a
= τ

4− τ
4− τ2 − 4a

> 0,

on (1/4, 3/8) and (1/2, 1]

vPS − vMH =s 1 +
4
(
1 + a2 − 2a− τ2

)
4− τ2 − 4a

1
3

1 + a
3

> 0,

while on [3/8, 1/2]

vPS − vMH =s 1 +
4
(
1 + a2 − 2a− τ2

)
4− τ2 − 4a

1
3

1 + a
3

− 8

1 + a
3

=s (17− a) τ2 − 80(1− a) = 80a+ 17τ2 − aτ2 − 80

≤ (17− (1− τ)) τ2 − 80(1− (1− τ))

= τ
(
τ2 + 16τ − 80

)
< 0.

Details for Example 3. The Fisher information Ia is 1/a2. To verify this, note that fa(x|a) =

−e−
x
a (a− x) /a3 and so

l(x|a) =
− 1
a3
e−

1
a
x (a− x)

1
ae
−x
a

=
1

a2
(x− a)

But then,

Ia =

∫ (
1

a2
(x− a)

)2 1

a
e−

x
a dx =

1

a2
.

Next, note that

σ =

∫
fs(x|a)

f(x|a)
fa(x|a)dx =

∫ ∞
1

e−(x−1)

1
ae
−x/a

(
− 1

a3
e−

1
a
x (a− x)

)
dx = − 1

a2
e1−x (x− a+ 1) |∞1 =

2− a
a2

.

Finally, since fs = e−(x−1) on [1,∞) we have

Is =

∫ ∞
1

(
e−(x−1)

)2
1
ae
−x/a dx = −a2 exp

(
1
a (2a+ x− 2ax)

)
2a− 1

∣∣∣∣∣
∞

1

,
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which is infinite for a ∈ (0, 1
2), while for a > 1

2 it is equal to

Is =
a2

2a− 1
e

1
a .

Next, let us derive the crossing behavior of vMH and vPS . We have that

vPS − vMH =s
vPS − vMH

η
= 1 +

σ

Ia
l(x|a)− ls(x|a) = 1 + (a− 2)

1

a2
(a− x)− ls(x|a)

where ls(x|a) = 0 for x < 1, and ls(x|a) = ae−(x−1)+x/a for x ≥ 1. For x ∈ [0, 1), the last

expression is clearly positive for a ≥ 2. For x ≥ 1, it is routine to establish that for a ∈ (2, 4) the

last expression is strictly concave in x, strictly negative at x = 1, strictly positive at x = 5 and

strictly negative for x large enough. Hence vPS is HLHL.

Finally, let us calculate the value to the agent of deviating to effort t facing vPS(·; a), the

contract that implements effort a in the relaxed problem. The utility gain from the deviation is

−ū− t2 +

∫
vPS(x; a)f(x|t)dx = −ū− t2 +

∫ (
ū+ c(a) +

ca(a)

Ia
l(x|a) + η

(
1 +

σ

Ia
l(x|a)− ls(x|a)

))
f(x|t)dx

= c(a) + η − t2 +

(
ca(a)

Ia
+ η

σ

Ia

)∫
l(x|a)f(x|t)dx− η

∫
ls(x|a)f(x|t)dx

= a2 + η − t2 +

(
2a+ η

2− a
a2

)∫
(x− a)

1

t
e−

x
t dx− ηa

t

∫ ∞
1

e−(x−1)+x
a
−x
t dx

But, ∫
(x− a)

1

t
e−

x
t dx = −e−

1
t
x (t− a+ x)

∣∣∣∞
0

= t− a,

and ∫ ∞
1

e−(x−1)+x
a
−x
t dx = −e

1−x(1− 1
a

+ 1
t )

1− 1
a + 1

t

∣∣∣∣∣
∞

1

=
e

1
a
− 1
t

1− 1
a + 1

t

where since a ≥ 2, 1− 1
a + 1

t is strictly positive. The gain to the deviation is thus

a2+η−t2+

(
2a+ η

2− a
a2

)
(t− a)−ηa

t

e
1
a
− 1
t

1− 1
a + 1

t

= − (a− t)2+η

(
1 +

2− a
a2

(t− a)− a

t

e
1
a
− 1
t

1− 1
a + 1

t

)
.

Note finally that

η =
cIa + caσ

(Is − 1) Ia − σ2
=

a2 1
a2

+ 2a2−a
a2(

a2

2a−1e
1
a − 1

)
1
a2
−
(

2−a
a2

)2 =
a (4− a)

a2

2a−1e
1
a − 1−

(
2−a
a

)2 .

In Online Appendix C.6, we show that if the principal chooses to induce initiative, she will induce

at least an effort of 2.8 or above (the intuition is that because the safe project can be induced by
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𝑎

𝑎′

Figure 5: Agent Optimality. The figure depicts the agent’s expected payoff from deviating from
a to a′. It shows that this payoff is negative.

paying the outside option, inducing an effort a little above 2 makes sense only if β is very large.

But then, a higher effort is better still). Figure 5 plots for a ∈ [2.8, 4], the value to the agent of

deviating to any given action a′ when faced with the contract solving PPS for that a. It is clear

that the agent has no profitable deviation.

SBS and at Most Three Crossings. We now prove the results regarding the structure of

compensation under the semi-bellshaped condition.

Proof of Theorem 2 Fix and suppress a and let τ ≡ l(0), τ̄ ≡ l(x̄), τ` = l(x`), τh = l(xh), and

τ̃ = l(x̃), where recall that [x`, xh] is the support of fs and x̃ be the maximizer of ls.

Consider first the case µPS−µMH = 0. Then, it cannot be that λPS−λMH ≤ 0, since then D

is always negative, violating Lemma 1. Thus, any crossing of D with zero occurs where ls(l−1) > 0

and so on [τ`, τh] an interval over which D(τ) is strictly quasiconvex given µPS − µMH = 0 and

thus crosses zero at most two times. By Lemma 1 it follows that vPS is HLH.

Now, let us turn to the case µPS−µMH > 0. If D changes sign three or more times, then over

some interval D must have sign pattern −/+ /−. Take the rightmost region J = [τ ′, τ ′′] ⊆ (τ , τ̄)

over which D is positive, and where D changes sign at τ ′ and τ ′′. We will show that D is strictly

negative on [τ , τ ′). But then, the pattern −/+/− occurs over at most one interval, and if it does,

then there can be one more region where D is positive to the right of τ ′′, but this region must

include τ̄ . No further crossings of D are possible. Hence, the only sign pattern consistent with

more than two crossings results in vPS being LHLH.

Assume first that τ ′ < τ`. Then since D is continuous at τ ′, D(τ ′) = 0 and D is strictly

increasing on [τ , τ`) and it it immediate that D is strictly negative on [τ , τ ′). Next, assume

τ ′ = τ`. Then, if ls jumps up at τ` then D is strictly positive on an interval to the right of
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τ ′, contradicting that D changes sign at τ ′. Thus τ ′ is again a continuity point of D, and so

D(τ ′) = 0 and D is strictly increasing on [τ , τ`] and thus D is strictly negative on [τ , τ ′). Finally,

assume τ ′ > τ`. If τ ′′ ≥ τ̃ , then we have a contradiction, since D ≥ 0 on (τ ′, τ ′′) and D is strictly

increasing on [τ̃ , τ̄ ] (using that ls is decreasing and µPS − µMH > 0) and hence D is strictly

positive on [τ ′′, τ̄ ] contradicting that D changes sign at τ ′′. Hence, we have τ` < τ ′ < τ ′′ < τ̃

and so D is continuous at τ ′ and τ ′′ and so is equal to zero at each. It follows that ls is strictly

convex at τ ′. To see this, note that if ls(l−1) is concave at τ ′ then by SBS it is strictly concave

on (τ ′, τ ′′]. But then since D(τ ′) = D(τ ′′) = 0, D is strictly negative on [τ ′, τ ′′], a contradiction.

Thus, D(τ ′) = 0, Dx(τ ′) ≥ 0, D is strictly concave on (τ`, τ
′) and concave on [τ , τ ′] and so D < 0

on [τ , τ ′), and done.

A similar argument establishes that if µPS − µMH < 0, and if J = [τ ′, τ ′′] is interior to [τ , τ̄ ],

with D positive on J and changing signs at τ ′ and τ ′′, then D is strictly negative everywhere to

the right of τ ′′ and so the only sign pattern consistent with more than two crossings is HLHL.

In particular, if τ ′′ ≥ τh then since D is strictly decreasing to the right of τh, it is strictly

negative to the right of τ ′′, while if τ ′′ < τh then one argues symmetrically to above to show that

τ̃ < τ ′ < τ ′′ < τh and so D must be concave and hence strictly negative from τ ′′ onwards. �

Proof of Proposition 1 Note that λPS−λMH +(µPS−µMH)τ−ηls(τ) is linear in τ , and hence

if negative at both τ and τ̄ , is negative everywhere. But then, using the premise, vPS − vMH is

everywhere negative, violating Lemma 1. Thus, vPS is strictly above vMH at at least one of 0

and x̄. But then, if there are only two crossings, HLH holds. �

A.3 Proofs for Section 6

Derivation of ∆ in Square-Root Case. Note that vPS = vMH+η(1+(σ/Ia)l(x|a)−ls(x|a)).

Thus,

CPS(a, ū) =
1

2

∫ (
vPS(x)

)2
f(x|a)dx

=
1

2

∫ (
vMH + η

(
1 +

σ

Ia
fa(x|a)

f(x|a)
− fs(x)

f(x|a)

))2

f(x|a)dx

=
1

2

∫ (
vMH

)2
f(x|a)dx+

η

2

∫
vMH

(
1 +

σ

Ia
fa(x|a)

f(x|a)
− fs(x)

f(x|a)

)
f(x|a)dx

+
η2

2

∫ (
1 +

σ

Ia
fa(x|a)

f(x|a)
− fs(x)

f(x|a)

)2

f(x|a)dx,

where we note that 1
2

∫ (
vMH

)2
f(x|a)dx = CMH(a). Consider the second term, and note that∫ (

1 +
σ

Ia
fa
f
− fs

f

)
fdx =

∫
fdx+

σ

Ia

∫
fadx−

∫
f sdx = 0.
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Hence, ∫
vMH

(
1 +

σ

Ia
fa
f
− fs

f

)
dx =

∫ (
λMH + µMH fa

f

)(
1 +

σ

Ia
fa
f
− fs

f

)
fdx

= µMH

∫
fa
f

(
1 +

σ

Ia
fa
f
− f s

f

)
fdx

= µMH

(∫
fadx+

σ

Ia

∫
f2
a

f
dx−

∫
fa
f

fs

f
f

)
dx

= µMH
(

0 +
σ

Ia
Ia − σ

)
= 0

and so we have

∆ =
η2

2

∫ (
1 +

σ

Ia
fa(x|a)

f(x|a)
− fs(x)

f(x|a)

)2

f(x|a)dx.

But then, by Lemma 2,

∆ =
η2

2Ia
((Is − 1)Ia − σ2).

Recalling that

η =
cIa + caσ

(Is − 1)Ia − σ2

we have, after taking the cancellation, that

∆ =
1

2Ia

(
c+ ca

σ
Ia

)2
(Is − 1)− σ2

Ia

,

where since by assumption PS binds, we have cIa + caσ > 0, and we are done.

To sketch a different proof, note that if one replaces the rhs of PS by ū + τ , and solves for

the multipliers, then for τ ∈ [0, c+ ca
Iaσ],

η(τ) =
σca + (c− τ) Ia

(Is − 1)Ia − σ2
,

while for higher τ , vMH is feasible and hence optimal. But then, since η(τ) is the shadow value

of tightening PS,

∆ =

∫ c+ca
σ
Ia

0
η(τ)dτ

which is easily shown to agree with our previous expression.
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𝑎

𝐶 𝑎

β

Figure 6: Costs and Optimal Efforts. The left panel depicts that the difference between CPS

and CMH is single-peaked and large. The right panel shows that optimal effort in PS is first
substantially below and then substantially above that in MH.

Details for Example 4. Using the expressions from Example 3, we obtain that for a ≥ 1
2 ,

∆ =
(c(a)Ia + ca(a)σ)2

−σ2 + (Is − 1)Ia
1

Ia
=

(
a2 1

a2
+ 2a

(
2−a
a2

))2
−
(

2−a
a2

)2
+
(

a2

2a−1e
1
a − 1

)
1
a2

1
1
a2

=
(a(4− a))2

a2

2a−1e
1
a − 1− (2−a)2

a2

,

which is equivalent to the expression stated in main text.

An Example Where Effort Distortions are Large in Both Directions. Consider the

following (carefully constructed) example. There are four outputs, x1 = 0, x2 = 1, x3 = 2, and

x4 = 10. Effort lies in [0, 1] with probabilities of output given a ∈ [0, 1] given by p1 = (1/4)(1−a),

p2 = (1/4)(1−a), p3 = 0.35(1+a), and p4 = 0.15(1+a), while under as, p
s
2 = 0.05 and ps3 = 0.95.29

Since probabilities are linear in a, the first-order approach is valid. The disutility of effort a is

c(a) = (1/(1.15 − a)) − (1/1.15) − (1/(1.15)2)a, utility of income is u(w) = logw, and ū = 0. In

Figure 6, the left panel shows CMH in magenta and CPS in blue. The difference between them is

single-peaked and PS ceases to bind for a close to one. The right panel shows the optimal efforts

as a function of β.30 The jump in aPS occurs where βEa[x|a] equals the slope of the dotted line

in the left panel.31 This generates an extreme example of Theorem 3.

A perhaps surprising feature of the example is that CPS is not monotone. The crux is that

when a is in the relevant range, the principal finds it very attractive to reduce v2, where ps/p is

29The example can be modified to make MLRP strict.
30It is easily verified that E[x|0] > E[x|as]. Hence, since a flat contract that pays the outside option induces as

and a = 0 in either PMH and PPS , it follows that for any β > 0, the principal prefers implementing a = 0 to as in
either MH or PS. A fortiori, she is better off to implement the optimal effort than as.

31The jump can be made arbitrarily large by lowering ps2, or by raising p3 while lowering p4.
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large, to discourage as. This has the side effect of providing excessive incentives for effort, and so

to restore IC, payments at x1 have to be larger than payments at x4. Increasing a then lowers

costs both because it becomes easier to distinguish as from a and because the distortion between

payments at x1 and x4 becomes smaller.

Effort Distortions. Let â be the action at which ∆ reaches its maximum, and let τ̂ be such

that for τ < τ̂ we have aPS(τ) ≤ â and for τ > τ̂ , aPS ≥ â, noting that B − CPS is strictly

supermodular in (a, τ), and so such a τ̂ exists.

Proof of Theorem 3 Note that for any τ ,

B(aPS(τ), τ)− CPS(aPS(τ)) ≥ B(aMH(τ), τ)− CPS(aMH(τ))

B(aMH(τ), τ)− CMH(aMH(τ)) ≥ B(aPS(τ), τ)− CMH(aPS(τ))

and so, adding the two inequalities and manipulating,

CPS(aMH(τ))− CMH(aMH(τ)) ≥ CPS(aPS(τ))− CMH(aPS(τ))

or

∆(aMH(τ)) ≥ ∆(aPS(τ)). (7)

Assume that τ > τ̂ so that aPS(τ) ≥ â. If ∆(aMH(τ)) = 0, then aPS(τ) = aMH(τ), and we

are done. So, assume ∆(aMH(τ)) > 0 and towards a contradiction, that aMH(τ) > aPS(τ). Then,

∆ is strictly decreasing between aPS(τ) and aMH(τ), contradicting (7). Thus, aPS(τ) ≥ aMH(τ).

Finally, assume aMH(τ) is interior, and towards a contradiction, assume that aPS(τ) =

aMH(τ). Then Ba(a
MH(τ), τ) − CPSa (aMH(τ)) = Ba(a

MH(τ), τ) − CMH
a (aMH(τ)) = 0, and

so ∆a(a
MH(τ)) = 0. But then, aPS(τ) = aMH(τ) = â where by assumption â is interior. Let

τ ′ = (τ̂ + τ)/2. Since B is strictly supermodular, aPS(τ ′) ≤ â and since Ba(â, τ
′)− CPSa (â) < 0,

in fact aPS(τ ′) < â, contradicting the definition of τ̂ , and we are done. �

A.4 Proofs for Section 7

The proof of Theorem 4 will follow from several technical lemmas, which will also allow us to

derive some additional properties of the problem when ū is sufficiently large. Some of the proofs

of these lemmas are in Online Appendix C.7.

Let us first derive the equations that define the multipliers. Recall that ϕ = u−1. We have

the following expressions for λ, µ, and η.
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Lemma 5 (Multipliers) Where PS binds, the multipliers λ, µ, and η are implicitly defined by

λ =

∫
ϕ′(vPS(x, a, ū))f(x|a)dx+ η,

µ =

∫
ϕ′(vPS(x, a, ū))fa(x|a)dx

Ia
+
ησ

Ia
, and

η =

∫
ϕ′(vPS(x, a, ū)) [Ia (1− ls(x|a)) + σl(x|a)] f(x|a)dx

Ia (Is − 1)− σ2
.

For a given contract v, define

W (v) = max
x

v(x)−min
x
v(x),

as the maximum amount by which v differs at its highest and lowest points, where W is mnemonic

for “wiggle.” The following lemma shows that if vPS has bounded wiggle, then as ū diverges,

the multipliers λ, µ, and η take on very simple forms. The predicate W (vPS(·, a, ū)) < J will

automatically hold for some J < ∞ when PS is satisfied at vMH as shown in CS Lemma 3.

The reason for this at an intuitive level is that vMH is monotone, and a monotone contract that

rises by more than a certain amount will provide excessively strong incentives, violating IC . But,

because PS contracts may cease to be monotone, and because of the complexities that η adds,

we will have to work harder to bound W . We do so below.

Lemma 6 (Limit Multipliers) Let Assumption 1 hold, let 0 < J < ∞, and let ε > 0. Then,

there is ū∗ < ∞ such that for all ū > ū∗, and for all a, if W (vPS(·, a, ū)) < J , and if PS binds,

then∣∣∣∣ λPS

ϕ′(ū+ c(a))
− 1

∣∣∣∣ < ε,

∣∣∣∣ µPS

ϕ′′(ū+ c(a))
− (Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2

∣∣∣∣ < ε,

∣∣∣∣ ηPS

ϕ′′(ū+ c(a))
− c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2

∣∣∣∣ < ε.

If PS does not bind, so that vPS = vMH , then ηPS = 0, and∣∣∣∣ λMH

ϕ′(ū+ c(a))
− 1

∣∣∣∣ ≤ ε, and

∣∣∣∣ µMH

ϕ′′(ū+ c(a))
− ca(a)

Ia

∣∣∣∣ < ε.

Note that where c(a)Ia + ca(a)σ = 0, we have c(a) = −ca(a) σIa . But then,

(Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2
=
ca(a)

Ia
,

and so the two versions of vSR agree, and thus vSR is continuous. Note also that since (Is−1)Ia−
σ2 > 0 and Is − 1 > 0 all the limiting multipliers are positive, with µ strictly positive. Hence,

since for x > E[x|as] sufficiently large, −ls(·|a) is strictly increasing , while l(·|a) is everywhere

strictly increasing, vSR is not constant except when a = 0.
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Let JSR ≡ maxaW
(
vSR(·, a, ū)

)
be the maximum wiggle that vSR takes on as one varies a.

This is finite, since ū cancels out, and the remaining expression of a and x is continuous over a

compact set. It is also strictly positive, since vSR is not constant when a > 0.

Now, let us consider vPS . We will show that in a very strong sense, vPS(·, a, ū) behaves in the

limit like vSR(·, a, ū). Recall the definition of d(a, ū) and dx(a, ū) given in Section 7.

We begin by showing that where c(a)Ia + ca(a)σ < 0, PS ceases to bind for large ū, and the

contract converges to one that is simply vSR(·, a), which in this case is the standard contract in

the square-root case with pure moral hazard.

Lemma 7 (PS Not Binding) Let Assumption 1 hold, and let c(a)Ia + ca(a)σ < 0. Then, for

all ε > 0, there is ū∗ <∞ such that for all ū > ū∗,

vPS(·, a, ū) = vMH(·, a, ū), dx(a, ū) < ε and d(a, ū) < ε.

If c(a)Ia + ca(a)σ > 0 then for large ū, PS fails at vMH(·, a, ū).

Proof Choose a where c(a)Ia + ca(a)σ < 0, and consider first vMH(·, a, ū). Consider any ū > ū∗,

and let ρ be the function defined by ϕ′(ρ(τ)) = τ . Since vMH(x, a, ū) = ρ(λ+ µl(x|a)),

vMH
x (x, a, ū) = ρ′ (λ+ µl(x|a))µlx(x|a) > 0.

But, since ϕ′(ρ(τ)) = τ , we have ϕ′′(ρ(τ))ρ′(τ) = 1, and so

ρ′ (λ+ µl(x|a)) =
1

ϕ′′(vMH(x, a, ū))
.

Substituting and then multiplying and dividing by ϕ′′(ū+ c), we obtain

vMH
x (x, a, ū) =

ϕ′′(ū+ c)

ϕ′′(vMH(x, a, ū))

µ

ϕ′′(ū+ c)
lx(x|a).

But, by CS, Lemma 3, there is some J <∞ such that for all ū sufficiently large, vMH(x, a, ū)−
ū− c(a) < J for all x and a. It follows from CS Lemma 1 that

ϕ′′(ū+ c)

ϕ′′(vMH(x, a, ū))
→ 1

uniformly in x and a. Also by CS, Proposition 1,

µ

ϕ′′(ū+ c(a))
→ ca(a)

Ia
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uniformly in a, and so it follows that

vMH
x (x, a, ū)− ca(a)

Ia
lx(x|a)→ 0

uniformly in x and a, establishing that for ū sufficiently large and for all a, dx(a, ū) < ε. Thus,

recalling that x̂(a) is the point where l(x|a) = 0,

vMH(x, a, ū)− vMH(x̂(a), a, ū)→ ca(a)

Ia
l(x|a) (8)

uniformly in x.

Now, from IR, ∫
vMH(x, a, ū)f(x|a)dx− ū− c(a) = 0,

and so, adding and subtracting vMH(x̂(a), a, ū) and rearranging,

vMH(x̂(a), a, ū)− ū− c(a) +

∫ (
vMH(x)− vMH(x̂(a))

)
f(x|a)dx = 0

But, by (8),∫ (
vMH(x, a, ū)− vMH(x̂(a), a, ū)

)
f(x|a)dx→ ca(a)

Ia

∫
l(x|a)f(x|a)dx = 0

and hence

vMH(x̂(a), a, ū)− ū− c(a)→ 0.

It follows that

vMH(x, a, ū)−
(
ū+ c(a) +

ca(a)

Ia
l(x|a)

)
→ 0,

uniformly in x and a, and so since vSR(·, a) = ū+ c(a) + ca(a)
Ia l(·|a) where c(a)Ia + ca(a)σ < 0, we

have shown that for all ū sufficiently large and for all a, d(a, ū) < ε, establishing the first claim.

To establish the remaining claims, note that the value of taking as over ū facing vMH is∫
vMH(x, a, ū)fs(x)dx− ū =

∫ (
vMH(x, a, ū)− ū

)
fs(x)dx

→
∫ (

c(a) +
ca(a)

Ia
l(x|a)

)
fs(x)dx

= c(a) +
ca(a)

Ia
σ,

and so if c(a)Ia + ca(a)σ < 0 then for high ū, PS does not bind at vMH(·, a, ū), while if c(a)Ia +

ca(a)σ > 0 then for high ū, vMH(·, a, ū) fails PS . �
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Our next lemma shows that as ū grows, for each a, one of two things happens. Either

vPS(·, a, ū) and vSR(·, a, ū) grow arbitrarily close to each other, or they stay a large distance

apart. Intermediate outcomes do not occur.

Lemma 8 (Distance between vPS and vSR) Let Assumption 1 hold. Then, for each ε ∈
(0, JSR/2), there is a threshold ū∗ < ∞ such that for all ū > ū∗, and for all a, either d(a, ū) ≤
ε and dx(a, ū) ≤ ε or d(a, ū) ≥ JSR.

Proof Note first that where c(a)Ia + ca(a)σ < 0, then by Lemma 7, we are always in the

first case for large enough ū. Consider c(a)Ia + ca(a)σ > 0, and assume that the second case

fails, so that d(a, ū) < 3JSR, and note that since for large enough ū, PS binds, we have that

vPS(x, a, ū) = ρ(λ+ µl(x|a)− ηls(x|a)), and thus

vPSx (x, a, ū) = ρ′ ((λ+ µl(x|a)− ηls(x|a))) (µlx(x|a)− ηlsx(x|a))

=
1

ϕ′′(vPS(x, a, ū))
(µlx(x|a)− ηlsx(x|a))

and so, multiplying and dividing by ϕ′′(ū+ c(a)), we have

vPSx (x, a, ū) =
ϕ′′(ū+ c(a))

ϕ′′(vPS(x, a, ū))

(
µ

ϕ′′(ū+ c(a))
lx(x|a)− η

ϕ′′(ū+ c(a))
lsx(x|a)

)
.

But, since d(a, ū) < JSR, it follows that W (v(·, a, ū)) < JSR + 2J and since by IR at some point

v(x, a, ū) = ū+ c(a), we have as in the proof of Lemma 6 applied to J = JSR + 2J that

ϕ′′(ū+ c(a))

ϕ′′(vPS(x, a, ū))
→ 1,

and by Lemma 6

µ

ϕ′′(ū+ c(a))
→ (Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2
, and

η

ϕ′′(ū+ c(a))
→ c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2
,

and so

vPSx (x, a, ū)→ (Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2
lx(x|a)− c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2
lsx(x|a) = vSRx (x, a, ū)

uniformly in x. But then, since each of vPS(·, a, ū) and vSR(·, a, ū) satisfy IR, it follows that for

ū sufficiently large, d(a, ū) < ε and dx(a, ū) < ε, as claimed. �

Proof of Theorem 4 Choose ū∗ such that for ū > ū∗ the conclusion of Lemma 8 holds and thus,
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for each a, either d(a, ū) ≤ ε, or d(a, ū) ≥ JSR.

Now, note that to implement effort 0, a contract that is flat at ū is optimal, and so d(0, ū) = 0.

But, d(·, ū) is continuous, and so, since d(0, ū) ≤ ε and since d(a, ū) can never lie in
(
ε, JSR

)
it

follows that d(a, ū) ≤ ε everywhere, and we are done. �

A.5 Proofs for Section 8

FOA and Square Root Utility. Let x̃ be the smallest point at which the peak of Faa(·|a′)
occurs as a′ varies.

Lemma 9 (FOA: Square-Root Utility) Assume CDFC∗. Let µSR(a) > 0. Then,
∫
vSR(x, a, ū)f(x|·)

is quasi-concave with peak at a and is strictly concave on a neighborhood of a whenever
∫
ls(x|a)faa(x|a′) ≥

0. This holds under any of the following conditions:

(i) f s has support contained in [0, x̃],

(ii) ls(0|a) ≥ ls(x̃|a),

(iii) for each a′,
∫ x̃

0 l
s(x|a) faa(x|a′)∫ x̃

0 faa(s|a′)ds
dx ≥ ls(x̃|a), or

(iv) for each a′, if Faa(x|a′) = Faa(z|a′) with z > x, then fs(x) ≥ fs(z).

Recalling that ls is single peaked, conditions (i)–(iii) are successively more general, where (iii)

says that ls at x̃ is no bigger than a particular weighted average of ls on [0, x̃]. Condition (iv) is

weaker than (i) but otherwise unranked. Each condition captures a sense in which f s is larger

before the peak in Faa than after.

Proof of Lemma 9 Let us first prove sufficiency of (iii). Fix a and a′. Since Faa(·|a′) > 0 for

all interior x, it follows that
∫
l(x|a)faa(x|a′)dx < 0. Thus, since caa ≥ 0 it suffices to show that∫

ls(x|a)faa(x|a′)dx ≥ 0. But,∫
ls(x|a)faa(x|a′)dx =

∫ x̃

0
ls(x|a)faa(x|a′)dx+

∫
x̃
ls(x|a)faa(x|a′)dx

≥
∫ x̃

0
ls(x̃|a)faa(x|a′)dx+

∫
x̃
ls(x|a)faa(x|a′)dx

=

∫
χ(x)faa(x|a′)dx,

where χ(x) equals ls(x̃|a) on [0, x̃] and ls(x|a) on [x̃, 1]. But then, since ls(·|a) is quasi-concave

and x̃ is beyond the peak of ls(·|a), χ is decreasing. And since
∫
faa(x|a′)dx = 0 and faa is first

positive and then negative, Beesack’s inequality (Beesack (1957)) yields
∫
χ(x)faa(x|a′)dx ≥ 0.

Clearly (i) implies (iii). To see that (ii) implies (iii) note that since ls is quasi-concave

ls(0|a) ≥ ls(x̃|a), if follows that ls(x|a) ≥ ls(x̃|a) for all x ∈ [0, x̃] and (iii) follows.
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Finally, let us turn to (iv). Note that ωx(x, a′) = faa(x|a′)
faa(ω(x,a)|a) , and consider

W (x|a′) ≡
∫ x

0
fs(s)faa(s|a′) +

∫ x̄

ω(x|a)
fs(s)faa(s|a′)ds.

We have W (0|a′) = 0, and for each x ∈ [0, x̂(a′)], that

Wx(x|a′) = f s(x)faa(x|a′)− ωx(x|a)fs(ω(x|a))faa(ω(x|a)|a′)

= fs(x)faa(x|a′)−
faa(x|a′)

faa(ω(x, a)|a)
f s(ω(x|a))faa(ω(x|a)|a′)

= (fs(x)− fs(ω(x|a))) faa(x|a′)

≥ 0,

using that x < x̂(a), and hence faa(x|a) > 0. Thus,
∫
fs(s)faa(s|a′) = W (x̂(a′)|a′) ≥ 0. �

An Alternative Approach to FOA Concavity of −
∫
ls(x|a)f(x|·) is far from necessary. For

example, since c is convex, it is enough that

µPS
∫
lfaa(x|a′)− ηPS

∫
lsfaa(x|a′) ≤ 0,

which can be rewritten as ∫
lsfaa(x|a′) ≥ θ

∫
lfaa(x|a′),

where

θ ≡ µPS

ηPS
=

(Is − 1) cac + σ

Ia + ca
c σ

.

Note that θ is increasing in ca
c , and that if σ ≤ 0, then θ diverges as ca

c →
Ia

−σ . But then, under

any conditions such that
∫
lfaa(x|a′) < 0, we will have the needed concavity as long as ca

c is large

enough. One needs to exercise some care here in constructing examples, since if ca
c is too large,

then Ia + ca
c σ < 0, at which point η is zero.

This approach can also be used to provide conditions under which the solution to PPS is

increasing, allowing the use of standard conditions for the validity of FOA. Since it is natural for

contracts in our setting to violate monotonicity, we do not pursue this further.

Proof of Theorem 5 Since
∫
vSR(x, a)faa (x|â) − caa(â) < 0 at â = a, and is continuous in â,

there is a neighborhood (a− δ, a+ δ) and τ > 0 such that
∫
vSR(x, a)faa (x|â)− caa(â) < −τ < 0

on the neighborhood. Thus, in particular, for any a′ ∈ [a, a+ δ], since∫
vSR(x, a)fa (x|a)− ca(a) = 0
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and since
∫
vSR(x, a)faa (x|â)− caa(â) < −τ , it follows that∫

vSR(x, a)fa
(
x|a′

)
− ca(a′) < −

(
a′ − a

)
τ

and so∫
vSR(x, a)f (x|a)− c(a)−

(∫
vSR(x, a)f (x|a+ δ)− c(a+ δ)

)
>

∫ a+δ

a

(
a′ − a

)
τda′ = τ

δ2

2

and thus, since
∫
vSR(x, a)fa (x|a′)− ca(a′) < 0 for a′ > a, a fortiori,∫
vSR(x, a)f (x|a)− c(a)−

(∫
vSR(x, a)f (x|â)− c(â)

)
> τ

δ2

2

for all â ≥ a+ δ, and similarly for â ≤ a− δ.
But then, since

∣∣vPS(x, a′, ū)− vSR(x, a′, ū)
∣∣→ 0 uniformly in x and a′, it follows that∫

vPS(x, a′, ū)f
(
x|a′

)
− c(a′)→

∫
vSR(x, a′, ū)f

(
x|a′

)
− c(a′)

uniformly in a′ as ū grows, and so for ū large enough, any action outside of (a−δ, a+δ) is dominated

by a facing vPS(·, a, ū). And, for ū large enough,
∫
vPS(x, a, ū)faa (x|â) − caa(â) < − τ

2 < 0 on

(a− δ, a+ δ) and so, since
∫
vPS(x, a, ū)fa (x|a)− ca(a) = 0, by construction, it follows that the

unique best response to vPS(·, a, ū) is a, and we are done. �

B Appendix B: Existence and Continuity

Our results hinge on PPS having a solution, and hence on the relevant multipliers existing, and

on those multipliers being continuous. This cannot be true with full generality, because there are

well-known counterexamples to existence already in the pure moral-hazard problem. But, when

we restrict attention to utility functions satisfying Assumption 1, then existence indeed follows

for a sufficiently large outside option.

We will prove existence of a solution to PPS with continuous multipliers. The proof for PMH

is a simplified version of the same proof. Consider the problem P̂PS(a, ū) which is PPS augmented

by a bounded payment constraint that v(x) ∈ [0, 2ū] for all x. Throughout this section, we will

impose Assumption 1.

While the space of functions v is ill-behaved, the space of distributions on rewards cross signals

is not. So, let us first move to mechanisms that allow for a randomized reward following any given

signal. A mechanism is thus defined by a transition probability, that is, a measurable function

κ : [0, 1] → ∆[0,∞), with the interpretation that following signal x ∈ [0, 1], the agent receives
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rewards according to κ(·|x). A special case is that κ(·|x) is Dirac at some particular value, a case

which will turn out to be central to us.

Following a small twist to an idea of Kadan, Reny, and Swinkels (2017), for given κ, let π be

the measure on ∆([0,∞) × [0, 1]) that arises if one first takes x uniform [0, 1], and then draws r

according to κ(·|x). LetM be the set of probability measures on ∆([0,∞)× [0, 1]) with marginal

onto signals equal to the uniform distribution. Note also that by Corollary 7.27.2 in Bertsekas and

Shreve (1978), every measure π ∈ M is associated with a transition probability that is defined

uniquely up to sets of x of Lebesgue measure zero.

We will thus move our search for an optimal mechanism to the spaceM. To do so, note that,

letting g be the density that is 1 on [0, 1], the utility of the agent facing κ of action a is∫ (∫
rdκ(r|x)

)
f(x|a)dx =

∫ ∫
r
f(x|a)

g(x)
dκ(r|x)g(x)dx =

∫
rf(x|a)dπ(x, r),

and so we can can rewrite all of the constraints in terms of π, and similarly for incentives and the

utility of the outside option. We will take the distance dP between any two distributions as given

by the Levy-Prokhorov metric. This induces the topology of weak convergence.

We will use the following construction repeatedly. Let ω : [0,∞) × [0, 1] → [0,∞) be mea-

surable, and satisfy that ω(r, x) − r < τ for all r and x. Start from a measure π, and let π̃

be constructed by first drawing (r, x) according to π, and then replacing r by ω(r, x). Then,

dp(π, π̃) ≤ τ . To see this, for any Borel set A of [0,∞) × [0, 1], let Aε be the set of all points

within ε of some point in A. Then, π̃(A) ≤ π(Aτ ) since for the final realization to be in A, the

initial realization must be within of τ of A, and similarly, π(A) ≤ π̃(Aτ ) since any point in A
ends up somewhere in Aτ .

Lemma 10 (Distributional Mechanism) Fix ū∗ > 2JSR.Then, for all (a, ū) ∈ [0, ā]×[ū∗,∞),

an optimal distributional mechanism π̂(·, a, ū) exists, is unique, and is continuous in (a, u).

Proof We will apply Berge’s theorem. Let

Θ(a, ū) =

π ∈M
∣∣∣∣∣∣∣∣∣∣

∫
rf(x|a)dπ(x, r) = ū+ c(a)∫
rfa(x|a)dπ(x, r) = ca(a)∫
rfs(x|a)dπ(x, r) ≤ ū

π ([0, 2ū]× [0, 1]) = 1

 .

That is, π ∈ Θ(a, ū) satisfies IR , IC , and PS , it never gives utility less than 0 or more

than 2ū, and it has the right marginal on signals. Let πSR(·, a, ū) be the distribution associated

with vSR(·, a, ū), and note that since ū∗ ≥ 2JSR, πSR(·, a, ū) ∈ Θ(a, ū), and so Θ is non-empty.

Let (ak, ūk) → (a′, ū′), and let πk ∈ Θ(ak, ūk). Then, since for k large, π ([0, 4ū′]× [0, 1]) = 1,

πk is a sequence of measures on a compact space, and so there is a subsequence along which πk
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converges to some limit π′. But, all the integrals defining Θ are of bounded continuous functions on

[0, 4ū′)× [0, 1], and so since πk converges to π′ in the weak topology, it follows that π′ ∈ Θ(a′, ū′).

Hence, Θ is upper hemi-continuous and compact valued.

Next, let us show that Θ is lower hemicontinuous. Fix (a′, ū′), π′ ∈ Θ(a′, ū′), a sequence

(ak, ūk) → (a′, ū′), and ε > 0. Let us show that for k̂ sufficiently large and for each k > k̂,

there is πk ∈ Θ(ak, ūk) such that dP (πk, π′) < 2ε. This is enough, as one can then construct a

subsequence along which πk → π′.

We begin by modifying π′ so that it never pays near 0 or 2ū′. Draw (r, x) according to π′,

then replace r by

(1− ε′)r + ε′vSR(x, a′, ū′),

where ε′ ∈ (0, ε) is chosen so that the resultant measure, call it π′′, satisfies dp(π′, π′′) ≤ ε. Now∫
rf(x|a)dπ′′ =

∫ (
(1− ε′)r + ε′vSR(x, a′, ū′)

)
f(x|a)dπ′

= (1− ε′)
∫
rf(x|a)dπ′ + ε′

∫
vSR(x, a′, ū′)f(x|a)dx,

and similarly for
∫
rfa(x|a)dπ′′ and

∫
rfs(x)dπ′′. Thus, π′′ ∈ Θ(a′, ū′). Note also that since

vSR(x, a′, ū′) > ū∗ − JSR > 1, π′′ never pays less than ε′, and similarly never more than 2ū′ − ε′.
Now, pick x` < xm < xh where ls(x`|a′) = ls(xh|a′). Using Lemma 14, choose γ > 0 small

enough that for all a within γ of a′

det


∫ x`+γ
x`−γ f(x|a)dx

∫ xm+γ
xm−γ f(x|a)dx

∫ xh+γ
xh−γ f(x|a)dx∫ x`+γ

x`−γ fa(x|a)dx
∫ xm+γ
xm−γ fa(x|a)dx

∫ xh+γ
xh−γ fa(x|a)dx∫ x`+γ

x`−γ f
s(x)dx

∫ xm+γ
xm−γ f

s(x)dx
∫ xh+γ
xh−γ f

s(x)dx


︸ ︷︷ ︸

Y (a)

< 0.

But, to construct a distributional mechanism satisfying IR , IC , and PS at (a, ū), we can solve

Y (a)

 ψ`(a, u)

ψm(a, u)

ψh(a, u)

 =

 ū+ c(a)− (1− ε)
∫
rf(x|a)dπ′ − ε

∫
v∗(x, a′, ū′)f(x|a)dx

ca(a)− (1− ε)
∫
rfa(x|a)dπ′ − ε

∫
v∗(x, a′, ū′)fa(x|a)dx

ū− ū′


and take π̃(·, a, ū) as the measure that results when one draws (r, x) according to π′′ and then

modifies any (r, x) with x ∈ xd by adding ψd to r.

Now, the column on the righthand side is arbitrarily close to 0 for (a, ū) close to (a′, ū′),

and so the determinant of the matrix formed by replacing a column of Y (a) with this column

is arbitrarily small, while as a → a′, detY (a) → detY (a′) > 0. But then, by Cramer’s rule

(ψ`(a, u), ψm(a, u), ψh(a, u)) → 0. Thus, in particular, for (a, ū) sufficiently close to (a′, ū′),
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|ψd(a, ū)| < ε′

2 , and so π̃(·, a, ū) places no weight on payments below 0 or above 2ū. Thus

π̃(·, a, ū) ∈ Θ(a, ū) and dp(π̃(·, a, ū), π′′) < ε so that dp(π̃(·, a, ū), π′) < 2ε, and we are done.

Since Θ is non-empty, compact valued, and continuous, and since
∫
ϕ(r)f(x|a)dπ is continuous

in π, we can apply Berge’s theorem to conclude that an optimum exists and that the set of optima

is upper hemicontinuous in (a, ū).

Let π′ be optimal for (a′, ū′), and let κ′ be a transition probability for π′. We claim that κ′ is

degenerate at almost all x. To see this, note that ϕ is strictly convex, and thus

ϕ

(∫
rdκ′(r|x)dx

)
<

∫
ϕ (r) dκ′(r|x)dx,

unless κ′ is degenerate. Thus, taking v′(x) =
∫
rdκ′(r|x)dx for each x, and noting that replacing

the agent’s lottery over utilities at each outcome by its expectation does not affect incentives, we

have that v′ is optimal for (a′, ū′). Next, assume there is a second optimum π′′ at (a′, ū′) with

corresponding v′′ 6= v′. Then the contract that provides utilty 1
2v
′(x) + 1

2v
′′(x) at each x is also

feasible, and by strict convexity of ϕ, cheaper still. Thus, the optimal solution is unique, where

we can let v̂(·, a, ū) be the optimal contract, and π̂(·, a, ū) the associated distributional contract.

Finally, since π̂ is unique, it follows that the optimum correspondence, which we already know

from Berge’s theorem to be upper hemicontinuous, is in fact continuous. �

Our next tasks are to show that v̂ is characterized by multipliers, and that these multipliers

move continuously in (a, ū). We begin with the analog to Proposition 2 for the case of P̂PS .

Lemma 11 (Characterization of v̂) Fix ū∗ > 2JSR. Then, for each (a, ū) with ū ≥ ū∗, v(·)
solves P̂PS if and only if it is feasible and there is (λ, µ, η) with η ≥ 0, and η

(
ū−

∫
v(x)fs(x)dx

)
=

0 such that

ϕ′(v(·)) = λ+ µl(·|a)− ηls(·|a) if ϕ′(0) < λ+ µl(·|a)− ηls(·|a) < ϕ′(2ū), (9)

v(x) = 0 if λ+ µl(·|a)− ηls(·|a) ≤ 0, and

v(x) = 2ū if λ+ µl(·|a)− ηls(·|a) ≥ ϕ′(2ū).

If η = 0, then v = vMH . If v(x) ∈ (0, 2ū) for all x, then λ > 0.

Proof Sufficiency is exactly as in the proof of Proposition 2 (see Online Appendix C.2) with

small additions to deal with the cases where v(x) ∈ {0, 2ū}, where a perturbation is only feasible

in one direction. The proof of the existence of multipliers follows from a variation of the necessity

part of Proposition 2, where we add the condition v(x) < 2ū to merit inclusion in X− and

the condition v(x) > 0 to merit inclusion in X+. As in the proof of Proposition 2, η ≥ 0,

η(ū−
∫
v(x)fs(x)dx) = 0, and if η = 0, then v̂PS = v̂MH . Finally, if v(x) ∈ (0, 2ū) for all x, then

exactly as before, λ > 0. �
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Next we show that an optimal contract only pays at the boundaries with small probability.

Lemma 12 (Payments at Boundaries) Fix τ ∈ (0, 1
2). Then, there is ū∗ such that for all

ū > ū∗ and for all a, ∫
{x|v̂(x,a,ū)∈{0,2ū}}

f(x|a)dx < 2τ.

Proof Choose ū∗ large enough such that for ū > ū∗,

τ

1− τ
ū > JSR.

Fix ū > ū∗, and a, and assume that v̂(·, a, ū) pays 0 with probability τ ′ ≥ τ . Let ζ be the average

utility given when it is not 0. The distribution of utilities under v̂(·, a, ū), which may not be

constant when it is more than 0, is thus a mean preserving spread of the distribution which pays

0 with probability τ ′ and ζ with probability 1− τ ′.
Now, by IR, (1− τ ′)ζ = ū+ c(a), and so

ζ =
ū+ c(a)

1− τ ′
>

ū

1− τ ′
= ū+

τ ′

1− τ ′
ū ≥ ū+

τ

1− τ
ū > ū+ JSR.

But then, v̂ gives utilities that are a mean preserving spread of those given by vSR. Since ϕ is

strictly convex, vSR(·, a, ū), which implements a, is strictly less expensive than v̂(·, a, ū), and so

v̂(·, a, ū) is not optimal, a contradiction. Similarly, v̂(·, a, ū) pays 2ū less than τ of the time. �

With this, we can prove that the multipliers move continuously in (a, ū). Let

τ∗ =
1

2
min
a

min{F (x̂s(a)|a), 1− F (x̂s(a)|a)}.

Note that τ∗ > 0, since the functions involved are continuous, and since we have assumed that

x̂s is everywhere interior. For each (a, ū) with ū > ū∗, let λ̂(a, ū), µ̂(a, ū), and η̂(a, ū) be the

multipliers associated with v̂(·, a, ū).

Lemma 13 (Continuity of Multipliers) Fix ū∗ ≥ 2JSR and large enough that Lemma 12

applies for τ = τ∗. Then, λ̂, µ̂, and η̂ are continuous at all (a, ū) with ū > ū∗.

Proof Let (ak, ūk) → (a′, ū′) where ū′ > ū∗. Then, by Lemma 10, π(·, ak, ūk) converges to

π(·, a′, ū′). To prove that (λ̂(ak, ūk), µ̂(ak, ūk), η̂(ak, ūk)) converges to (λ̂(a′, ū′), µ̂(a′, ū′), η̂(a′, ū′)),

note first that if either or both of µ̂(ak, ūk) or η̂(ak, ūk) diverge, then λ̂(ak, ūk)+ µ̂(ak, ūk)l(x|ak)−
η̂(ak, ūk)ls(x|ak) becomes arbitrarily steep to the right of x̂s if µ̂(ak, ūk) ≥ 0, and arbitrarily steep

to the left of x̂s if µ̂(ak, ūk) ≤ 0, and so for k large, v̂(·, ak, ūk) is interior only on an arbitrarily short

interval of one of [0, x̂s] or [x̂s, 1], which is inconsistent with Lemma 12. But, since µ̂(ak, ūk) and

η̂(ak, ūk) are bounded, IR implies that λ̂(ak, ūk) is bounded as well. Thus, along a subsequence
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if needed, (λ̂(ak, ū), µ̂(ak, ū), η̂(ak, ū)) converges to some (λ̂′, µ̂′,η̂′). But then, by the sufficiency

part of Lemma 11, the contract characterized by (λ̂′, µ̂′,η̂′) is optimal in P̂PS(a′, ū′). But then,

optima are unique, it must be that (λ̂′, µ̂′,η̂′) = (λ̂(a′, ū′), µ̂(a′, ū), η̂(a′, ū)), and we are done. �

We are finally in a position to prove existence of a continuous solution to PPS .

Theorem 6 (Existence) Let Assumption 1 hold. Then, there is ū∗ <∞ such that for all (a, ū)

with ū > ū∗, solutions to both PPS and PMH exist. The multipliers characterizing these solutions

are continuous in (a,ū) where ū > ū∗.

Proof We will prove the existence of an optimal solution to PPS and continuity of multipliers

that characterize the solution. The proof for PMH is similar. Recall that |vSR − ū| < JSR, and

so we can thus choose ū∗ large enough that for all ū > ū∗, vSR(x, a, ū) ∈ [2JSR, 2ū − 2JSR] for

all a and x. And, by Lemma 8 for any given ε ∈ (0, J
SR

2 ), there is ū∗ large enough such that for

all ū > ū∗, either d(a, ū) < ε or d(a, ū) > JSR.

Let

d̂(a, ū) ≡ max
x

∣∣v̂PS(x, a, ū)− vSR(x, a, ū)
∣∣ .

Consider any a where d̂(a, ū) < JSR. Then, it follows that v̂PS(x, a, ū) ∈ (0, 2ū) for all x, and

so the multipliers associated with v̂PS(x, a, ū) also characterize an optimum of PPS which hence

exists, and so v̂PS(·, a, ū) = vPS(·, a, ū) and thus d̂(a, ū) = d(a, ū). Thus, by definition of ū∗,

d̂(a, ū) < ε. Finally, note that d̂(0, ū) = 0, since the optimal solution in P̂PS(0, ū) is to pay ū at

all outcomes which is what vSR also specifies. But then, since d̂ is continuous, and is never in the

interval (ε, J), d̂(a, ū) < ε for all a. But then, for all a, v̂PS(·, a, ū) solves the sufficient conditions

for optimality in PPS(a, ū), and hence vPS(·, a, ū) exists and is equal to v̂PS(·, a, ū), and so by

Lemma 13 is defined by continuous multipliers. �

C Online Appendix

C.1 Details for Example 1

Recall that the signal technology is given by

x1 x2 x3

a1
3
4

1
6

1
12

a2
1
3

1
3

1
3

a3 0 0 1

It is clear that in both MH, and PS, a1 and as can be implemented by offering ū at all outcomes

for a cost of 1
2 , while for a3 ≤ 5, a3 can be implemented by offering utility 0 at x1 and x2 and
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ū+ a3 at x3 for a cost of 1
2(ū+ a3)2.32

Let us turn to a2. The minimization problem the principal faces in MH is

min
v1,v2,v3

(
1

3

v2
1

2
+

1

3

v2
2

2
+

1

3

v2
3

2

)
s.t.

1

3
v1 +

1

3
v2 +

1

3
v3 − 1 ≥ ū

1

3
v1 +

1

3
v2 +

1

3
v3 − 1 ≥ 3

4
v1 +

1

6
v2 +

1

12
v3

1

3
v1 +

1

3
v2 +

1

3
v3 − 1 ≥ v3 − a3

where the first constraint is the participation constraint (IR), the second the constraint (IC1)

that the agent does not want to deviate to a1, and the third the constraint (IC3) that the agent

does not want to deviate to a3. Let λ, µ1, and µ3 be the Lagrange multipliers of these constraints.

Then, the relevant first-order conditions are

1

3
v1 − λ

1

3
− µ1

(
1

3
− 3

4

)
− µ3

(
1

3

)
= 0,

1

3
v2 − λ

1

3
− µ1

(
1

3
− 1

6

)
− µ3

(
1

3

)
= 0, and

1

3
v3 − λ

1

3
− µ1

(
1

3
− 1

12

)
− µ3

(
1

3
− 1

)
= 0.

Let us look at case where IR and IC1 bind and IC3 is slack so that µ3 = 0, and then check when

the solution to the relaxed problem in fact satisfies IC3. We then have 5 equations in 5 unknowns,

vis the three just displayed along with IR and IC1 as equalities. The solution to this system is

λ = 2, µ1 =
24

19
, v1 =

8

19
, v2 =

50

19
, and v3 =

56

19
.

For IC3 to be slack, we need ū > v3 − a3, or a3 >
37
19 .

For PS, we have the additional constraint v2 ≤ ū to which we adjoin the Lagrange multiplier

η. Taking the first-order conditions and focusing on the case where IC3 is slack, so µ3 = 0, we

32Higher values of a3 can be implemented when ū is higher.
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have the 6 equations in 6 unknowns

1

3
v1 − λ

1

3
− µ1

(
1

3
− 3

4

)
= 0

1

3
v2 − λ

1

3
− µ1

(
1

3
− 1

6

)
+ η = 0

1

3
v3 − λ

1

3
− µ1

(
1

3
− 1

12

)
= 0

v2 = 1

1

3
v1 +

1

3
v2 +

1

3
v3 − 1 = 1

1

3
v1 +

1

3
v2 +

1

3
v3 − 1 =

3

4
v1 +

1

6
v2 +

1

12
v3,

the solution to which is

λ =
95

32
, η =

31

32
, µ1 =

15

8
, v1 =

5

8
, v2 = 1, and v3 =

35

8
.

For IC3 to be slack, we need v3 − a3 < ū, or a3 >
27
8 .

We thus have

CMH(a2) =

(
1

3

(
vMH

1

)2
2

+
1

3

(
vMH

2

)2
2

+
1

3

(
vMH

3

)2
2

)
=

50

19

and similarly, CPS(a2) = 219
64 . Let Bi and Bs be the gross returns to the principal of the various

actions. To generate Figure 1, we note that a2 � as under MH if B2−CMH(a2) ≥ Bs−CMH(as),

or 1
3 + 1

3x3 − 50
19 ≥ 1− 1

2 , from which we have x3 ≥ 319
38
∼= 8.39 (the pink line). Similarly, a2 � as

under PS if 1
3 + 1

3x3 − 219
64 ≥ 1 − 1

2 , or x3 ≥ 689
64
∼= 10.77 (the purple line). Next, a2 � a3

under MH if B2 − CMH(a2) ≥ B3 − CMH(a3) or 1
3 + 1

3x3 − 50
19 ≥ x3 − 1

2 (1 + a3)2, from which

a3 ≥
√

4
3x3 + 262

57 − 1 (the red line), and a2 � a3 under PS if B2 − CPS(a2) ≥ B3 − C(a3), or

1
3 + 1

3x3 − 219
64 ≥ x3 − 1

2 (1 + a3)2, from which a3 ≥
√

4
3x3 + 593

96 − 1 (the blue line). Finally,

a3 is preferred to as if B3 − C(a3) ≥ Bs − C(as), or x3 − 1
2 (1 + a3)2 ≥ 1 − 1

2 , from which

a3 ≤
√

2x3 − 1 − 1 (the green line). Figure 1 is generated by graphing each of the most binding

equation for each x3. It can be checked that at all relevant a3 for each of the MH and PS cases

(that is, along the red and blue segments displayed in the figure), a3 is large enough that the

omitted constraint IC3 does not bind. For example, for x3 above 10.77, effort is always above
27
8 , and so the omitted constraint is satisfied. Below 10.77, the green line is below the blue line,

and so the binding constraint is driven by switching from a3 to as. The fact that when a3 is this

small, a2 may be more expensive to implement than the given calculation is then irrelevant as we

simply have that an already ruled out choice is even less attractive than it seemed.
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C.2 Derivation of Optimality Conditions

Say that v is feasible if it satisfies IR , IC , and PS.

Proposition 2 (Optimality Condition) Fix a and ū. Then, v(·) solves PPS if and only if it

is feasible and there is (λ, µ, η) with λ ≥ 0, η ≥ 0, and η
(
ū−

∫
v(x)fs(x)dx

)
= 0 such that

ϕ′(v(·)) = λ+ µl(·|a)− ηls(·|a). (10)

If such a v and (λ, µ, η) exists, then it is unique. If η = 0, then v = vMH .

While this is reasonably obvious given standard convex optimization techniques, we provide

a self-contained proof. The proof uses the following lemma:

Lemma 14 (Determinant) Fix any a′, and any triple x` < xm < xh where ls(x`|a′) = ls(xh|a′).
Then there is γ > 0 such that if we take

Q(a) ≡


∫ x`+γ
x`−γ f(x|a)dx

∫ xm+γ
xm−γ f(x|a)dx

∫ xh+γ
xh−γ f(x|a)dx∫ x`+γ

x`−γ fa(x|a)dx
∫ xm+γ
xm−γ fa(x|a)dx

∫ xh+γ
xh−γ fa(x|a)dx∫ x`+γ

x`−γ f
s(x)dx

∫ xm+γ
xm−γ f

s(x)dx
∫ xh+γ
xh−γ f

s(x)dx

 ,

then detQ(a) < 0 for all a ∈ [a′ − γ, a′ + γ].

Proof We have that detQ(a) =s det Q(a)
2γ , were we note that when γ is small, Q(a)

2γ is term by

term as close as is desired to

R =

 f(x`|a′) f(xm|a′) f(xh|a′)
fa(x

`|a′) fa(x
m|a′) fa(x

h|a′)
fs(x`) fs(xm) fs(xh)

 .
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But,

detR = f(x`|a′)
(
fa′(x

m|a′)fs(xh|a′)− fs(xm|a′)fa′(xh|a′)
)

− f(xm|a′)
(
fa′(x

`|a′)fs(xh|a′)− fs(x`|a′)fa′(xh|a′)
)

+ f(xh|a′)
(
fa′(x

`|a′)fs(xm|a′)− fs(x`|a′)fa′(xm|a′)
)

=s l(x
m|a′)ls(xh|a′)− ls(xm|a′)l(xh|a′)−

(
l(x`|a′)ls(xh|a′)− ls(x`|a′)l(xh|a′)

)
+ l(x`|a′)ls(xm|a′)− ls(x`|a′)l(xm|a′)

= −ls(xm|a′)l(xh|a′)− l(x`|a′)ls(x`|a′) + ls(x`|a′)l(xh|a′) + l(x`|a′)ls(xm|a′)

= −
(
ls(xm|a′)− ls(x`|a′)

)(
l(xh|a′)− l(x`|a′)

)
< 0,

where at the second line, we divided by f(x`|a′)f(xm|a′)f(xh|a′), the third line uses that ls(x`|a′) =

ls(xh|a′), and the inequality follows since ls is strictly single peaked, and l is strictly increasing.

Thus, since the determinant is continuous in the entries of the matrix, we are done. �

Proof of Proposition 2 To see sufficiency, let ṽ be any other feasible contract that differs from

v on a positive f(·|a)-measure set of outcomes, and define

Ψ(δ) ≡
∫
ϕ((1− δ)v(x) + δṽ(x))f(x|a)dx.

Assume that ṽ has costs lower than v, so that

Ψ(1) =

∫
ϕ(ṽ(x))f(x|a)dx ≤

∫
ϕ(v(x))f(x|a)dx = Ψ(0).

Since u is strictly concave, ϕ is strictly convex, and thus since ṽ differs from v on a positive

f(·|a)-measure set of outcomes, Ψ is strictly convex as well. Thus, Ψδ(0) < 0. But,

Ψδ(0) =

∫
ϕ′(v(x))(ṽ(x)− v(x))f(x|a)dx

= λ

∫
(ṽ(x)− v(x))f(x|a)dx+ µ

∫
(ṽ(x)− v(x))fa(x|a)dx− η

∫
(ṽ(x)− v(x))fs(x)dx

= −η
∫

(ṽ(x)− v(x))fs(x)dx,

where the second equality follows since ϕ′(v(x)) = λ+ µl(x|a)− ηls(x|a), and the third equality

follows since IR and IC hold as equalities for both v and ṽ. If η = 0, then we have Ψδ(0) = 0,

contradicting Ψδ(0) < 0. So, assume η > 0. Then,
∫
v(x)fs(x)dx = ū, and since ṽ satisfies PS ,∫

ṽ(x)fs(x)dx ≤ ū, and so
∫

(ṽ(x)− v(x))fs(x)dx ≤ 0. But then, Ψδ(0) ≥ 0, again contradicting
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that Ψδ(0) < 0. It follows that v is the unique solution to PPS .

To see necessity, fix any a, and any triple x` < xm < xh where ls(x`|a) = ls(xh|a). Appealing

to Lemma 14, for d ∈ (`,m, h) choose γ > 0 and then define Id = [xd − γ, xd + γ]. Consider the

effect of changing v by adding ψd on Id for each of d ∈ (`,m, h). The effect on
∫
vf ,

∫
vfa, and∫

vfs can be seen to be the top, middle and bottom elements of

Q
[
ψ`, ψm, ψh

]T
,

where here a = a′ is constant, and so we suppress the argument of Q.

Since Q has non-zero determinant, to vary
∫
vf at rate one while holding fixed

∫
vfa and∫

vfs, one can vary (ψ`, ψm, ψh) at rate[
ψ`IR, ψ

m
IR, ψ

h
IR

]
≡ Q−1 [1, 0, 0]T ,

the marginal cost of which is

λ ≡
∑

d∈{`,m,h}

ψdIR

∫
Id
ϕ′(v(x))f(x|a)dx.

Similarly, if we define [
ψ`IC , ψ

m
IC , ψ

h
IC

]
≡ Q−1 [0, 1, 0]T ,

then one can vary
∫
vfa while holding

∫
vf and

∫
vfs constant at cost

µ ≡
∑

d∈{`,m,h}

ψdIC

∫
Id
ϕ′(v(x))f(x|a)dx

and if we define [
ψ`PS , ψ

m
PS , ψ

h
PS

]
≡ Q−1 [0, 0,−1]T ,

then one can reduce
∫
vfs while holding

∫
vf and

∫
vfa constant at cost

η ≡
∑

d∈{`,m,h}

ψdPS

∫
Id
ϕ′(v(x))f(x|a)dx.

Of course one can take linear combinations of these perturbations.

Let

X− =
{
x|ϕ′ (v(x)) < λ+ µl(x|a)− ηls(x|a)

}
,

and assume F (X−|a) > 0. Increase v at rate one on X−, and undo the effect by the perturbations.

The direct rate of change of costs is
∫
X− ϕ

′ (v(x)) f(x|a)dx while the benefit of undoing the changes
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using our three perturbations is

λ

∫
X−

f(x|a)dx+ µ

∫
X−

fa(x|a)dx− η
∫
X−

f s(x|a)dx

and so the net benefit to the principal of this perturbation is∫
X−

(
ϕ′ (v(x))− λ+ µl(x|a)− ηls(x|a)

)
f(x|a)dx > 0.

This contradicts that v(·) is optimal. Similarly, if we define

X+ =
{
x|ϕ′ (v(x) > λ+ µl(x|a)− ηls(x|a)

}
,

then reducing payoffs on X+ at rate one and undoing the effect via the perturbations is strictly

profitable unless F (X+|a) = 0. It follows that on an F (·|a)-measure one set of x, (10) holds for

the λ, µ, and η we derived.

Assume that η > 0. Then, if ū−
∫
v(x)fs(x)dx > 0 one can increase

∫
vfs at benefit η using

−(ψ`PS , ψ
m
PS , ψ

h
PS) to strictly benefit the principal, a contradiction, and so ū−

∫
v(x)fs(x)dx = 0.

Assume that η is 0. Then, exactly as above, one can show that v solves PMH (see Proposition

1 of Kadan, Reny, and Swinkels (2017)) so that v = vMH . Finally, assume that η < 0. By the

analysis from above with vMH playing the role of ṽ, it follows from the optimality of v that

0 > Ψδ(0) = −η
∫

(vMH(x)− v(x))fs(x)dx,

and so, since η < 0,
∫

(vMH(x)− v(x))fs(x)dx < 0. But then, since v satisfies PS, a fortiori vHM

satisfies PS. And, since ls is non-monotone, it follows that vMH and v differ on a positive measure

set. Thus, since vMH is the unique optimum in PMH , we have that∫
ϕ(v(x))f(x|a)dx >

∫
ϕ(vMH(x))f(x|a)dx,

contradicting that v was optimal in PPS . Hence, η ≥ 0.

Finally, note that if we add constant to all utilities, then IR is relaxed at rate 1, IC is

unaffected, and PS is tightened at rate one. So, if one does this, and then undoes the effects on

IR and PS using our perturbations, then the net benefit is∫
ϕ′(v(x))f(x|a)dx− λ+ η,
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and so, for this variation not to pay, we must have

λ =

∫
ϕ′(v(x))f(x|a)dx+ η > 0,

and we are done. �

C.3 Details for Footnote 17

Start from the Example 2. Let us begin by making f have strict MLRP. To do so, let

f ε = f + ε

(
1

2
− x
)

,

and note that for each interval, f εa = fa is constant, while f ε is strictly decreasing, and so f εa/f
ε

is strictly increasing. Now, let us make f ε continuous. To do so, let δ < 1/16 (half the radius of

the smallest interval over which f was constant in x), and consider the function

α(z, θ) =
1

2
+

1

π
arctan

(
θz +

1

δ − z
− 1

z + δ

)
,

for z ∈ [−δ, δ], where it is easy to verify that for any given θ > 0, α is a strictly increasing function

with α(−δ) = 0, α(δ) = 1, and α(−z) + α(z) = 1. It is also easy to verify that as θ diverges, α

converges to a step function which is 0 for z < 0 and 1 for z > 0. For each jump point xJ , and

on the interval (xJ − δ, xJ + δ), let

f ε,θ = (1− α(x− xJ)) f ε(xJ − δ) + α(x− xJ)f ε(xJ + δ).

Let us first verify that f ε,θ is a density. To see this, note that (suppressing a)∫ xJ+δ

xJ−δ
f ε,θ(x)dx =

∫ δ

−δ
((1− α(z)) f ε(xJ − δ) + α(z)f ε(xJ + δ)) dz

= f ε(xJ − δ)
∫ δ

−δ
(1− α(z)) dz + f ε(xJ + δ)

∫ δ

−δ
α(z)dz

=

(
f−(xJ)− ε

(
xJ − δ −

1

2

))∫ δ

−δ
(1− α(z)) dz +

(
f+(xJ)− ε

(
xJ + δ − 1

2

))∫ δ

−δ
α(z)dz

But,∫ δ

−δ
(1− α(z)) dz =

∫ 0

−δ
(1− α(z)) dz +

∫ δ

0
(1− α(z)) dz =

∫ 0

−δ
(α(−z)) dz +

∫ δ

0
(1− α(z)) dz

=

∫ δ

0
(α(z)) dz +

∫ δ

0
(1− α(z)) dz = δ
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and similarly,
∫ δ
−δ α(z)dz = δ, and so the last expression is equal to

δ

(
f−(xJ)− ε

(
xJ − δ −

1

2

)
+ f+(xJ)− ε

(
xJ + δ − 1

2

))
= δ

(
f−(xJ) + f+(xJ)− 2ε

(
xJ −

1

2

))
.

But,∫ xJ+δ

xJ−δ
f ε(x)dx =

∫ 0

−δ
f ε(xJ + z)dz +

∫ δ

0
f ε(xJ + z)dz

=

∫ 0

−δ

(
f(xJ + z)− ε

(
xJ + z − 1

2

))
dz +

∫ δ

0

(
f(xJ + z)− ε

(
xJ + z − 1

2

))
dz

= δf−(xJ)− ε
∫ 0

−δ

(
xJ + z − 1

2

)
dz + δf+(xJ)− ε

∫ δ

0

(
xJ + z − 1

2

)
dz

= δf−(xJ) + δf+(xJ)− 2εδ

(
xJ −

1

2

)

and so
∫ xJ+δ
xJ−δ f

ε,θ(x)dx =
∫ xJ+δ
xJ−δ f

ε(x)dx, and f ε,θ is a density.

Finally, let us check that f ε,θ satisfies MLRP. On any given interval (xJ − δ, xJ + δ), we have

f ε,θa
f ε,θ

=
f εa(xJ − δ|a) + α (x, θ) (f εa (xJ + δ|a)− f εa(xJ − δ|a))

f ε(xJ − δ|a) + α (x, θ) (f ε (xJ + δ|a)− f ε(xJ − δ|a))

and so since α′ > 0,(
f ε,θa
f

)
x

=s (f εa (xJ + δ|a)− f εa(xJ − δ|a)) (f ε(xJ − δ|a) + α (x, θ) (f ε (xJ + δ|a)− f ε(xJ − δ|a)))

− (f εa(xJ − δ|a) + α (x, θ) (f εa (xJ + δ|a)− f εa(xJ − δ|a))) (f ε (xJ + δ|a)− f ε(xJ − δ|a))

= (f εa (xJ + δ|a)− f εa(xJ − δ|a)) f ε(xJ − δ|a)− f εa(xJ − δ|a) (f ε (xJ + δ|a)− f ε(xJ − δ|a))

= f εa (xJ + δ|a) f ε(xJ − δ|a)− f εa(xJ − δ|a)f ε (xJ + δ|a)

=s
f εa (xJ + δ|a)

f ε (xJ + δ|a)
− f εa(xJ − δ|a)

f ε(xJ − δ|a)
> 0

establishing MLRP.

Finally, note that if we perturb fs to be strictly concave, as for example

fs(x) =
8 + κ

(
x− 7

16

)2
1 + κ 1

6144

then
fs

f
=

1

1 + κ 1
6144

8 + κ
(
x− 7

16

)2
1 + a

3 + ε
(

1
2 − x

)
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(
fs

f

)
x

=
1

1 + κ 1
6144

2κ
(
x− 7

16

) (
1 + a

3 + ε
(

1
2 − x

))
−
(

8 + κ
(
x− 7

16

)2)
(−ε)(

1 + a
3 + ε

(
1
2 − x

))2
(
fa
f

)
x

=
1
3 (−ε)(

1 + a
3 + ε

(
1
2 − x

))2
and so

lsx

lε,θx
=

1

1 + κ 1
6144

2κ
(
x− 7

16

) (
1 + a

3 + ε
(

1
2 − x

))
−
(

8 + κ
(
x− 7

16

)2)
(−ε)

1
3 (−ε)

from which (
lsx

lε,θx

)
x

=s − (6 + 2a+ 3ε− 6xε)

which is negative for ε < 2.

C.4 Details for Footnote 20

In Footnote 20 we asserted a few comparative statics results regarding ∆. Here are the proofs of

those assertions. Note first that it is immediate that ∆ decreases in Is, using that (Is−1)Ia−σ2 >

0. This is intuitive since if fs and f are easier to tell apart, then PS hurts less. Let us consider

how ∆ changes with Ia. We have

∆ =
1

2
c2Ia

(
1 + ca

c
σ
Ia

)2
(Is − 1)Ia − σ2

=
1

2

(cIa + caσ)2

(Is − 1) (Ia)2 − σ2Ia
,

and thus

∆Ia =
1

2

2 (cIa + caσ) c
(

(Is − 1) (Ia)2 − σ2Ia
)
− (cIa + caσ)2 ((Is − 1)2Ia − σ2

)
(

(Is − 1) (Ia)2 − σ2Ia
)2

=s 2c
(

(Is − 1) (Ia)2 − σ2Ia
)
− (cIa + caσ)

(
(Is − 1)2Ia − σ2

)
= −σ

(
σ (cIa + caσ) + 2ca

(
(Is − 1)Ia − σ2

))
where we know that (Is − 1)Ia − σ2 is strictly positive from Lemma 2 and cIa + caσ is positive

since PS binds. Hence, if σ is positive, then ∆Ia is negative, while if σ is negative, we have

conflicting forces. This provides one more example where we care about the sign of σ.
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Finally,

∆σ =s 2 (c(a)Ia + ca(a)σ) ca(a)
(
(Is − 1)Ia − σ2

)
+ 2 (c(a)Ia + ca(a)σ)2 σ

= 2a2Ia (σca + cIa) (cσ − ca + caI
s)

=s ca(I
s − 1) + cσ

>
ca
Ia
(
Ia(Is − 1)− σ2

)
> 0.

where the first inequality follows since PS binds and so c > −σca
Ia , and the second by Lemma 2.

C.5 Conditions for Nonbinding PS at Large Effort

In Section 4.1, we showed that if c(a)Ia+ca(a)σ < 0 then constraint PS is slack. We now provide

two sets of sufficient conditions under which such is the case for large enough values of a. To this

end, let lx(a) ≡ minx lx(x|a) and let l̄x(a) ≡ maxx lx(x|a). We have the following result.

Lemma 15 (Non-Binding PS for Large Effort) Constraint PS ceases to bind for large enough

values of a if either of the following sets of conditions hold:

(i) a ∈ [0, 1]; ca/c diverges as a approaches 1; and lima→1 σ(1)/Ia(1) < 0;

(ii) a ∈ [0,∞); either l(·|a) is convex and for sufficiently large a, E[x|a] > E[x|as], or l(·|a) is

concave and there is x̃ ∈ [0, 1] such that for all a sufficiently large, x̂(a) ≥ x̃ > E[x|as]; there is

an υ > 0 such that
lx(a)

l̄x(a)
≥ υ for all a sufficiently large; and aEa[x|a]→ 0.

Proof Part (i) follows since under the premises, we have

lim
a→1

ca(a)

c(a)

σ(a)

Ia(a)
= −∞,

and so is less than −1 for a sufficiently close to 1, which implies that c(a)Ia+ca(a)σ < 0. Sufficient

for lima→1 σ(1)/Ia(1) < 0 is that Ia(1) <∞, for which a bounded likelihood ratio is sufficient, and

σ(1) < 0, which says that when the agent works at her maximum possible effort, the covariance

between l and ls is negative.

For some intuition for part (ii), note that c convex implies that aca(a)
c(a) ≥ 1, and thus c(a)Ia +

ca(a)σ < 0 as long as σ
aIa < −1. The proof shows that, under the stated premises, σ(a)

aIa(a) not

only is eventually less than −1, but in fact diverges to negative infinity. One version of (ii) deals

with the case in which l is convex, and the other with the case in which l is concave and for a

large, x̂(a), the point at which fa = 0, is above E[x|as] by a strictly positive amount. In turn,

the ratio condition states that as a diverges,
lx(a)

l̄x(a)
remains bounded away from zero. Since l has

been assumed either concave or convex, this involves a comparison of lx(0, a) with lx(x̄, a), where

x̄ is the upper bound of the support of f(·|a), and where we abuse notation if x̄ =∞. Finally, we
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assume that as effort diverges, aEa[x|a]→ 0. It is easily shown that this holds if E[x|a] is concave

in a and bounded.33 Of course, E[x|a] will be concave if Faa ≥ 0, the convexity of the distribution

function condition. It can be shown that aEa[x|a]→ 0 also holds if E[x|a] is unbounded but grows

more slowly than log a.

To prove part (ii) formally, note that

σ(a)

aIa(a)
≥ υ

σ(a)
lx(a)

aIa(a)

l̄x(a)

.

We will show that the numerator of the right hand side is negative for sufficiently large a and

bounded away from zero, while the denominator is positive and converges to zero.

Consider the numerator. Assume first that l(·|a) is convex. Then, from (5), for all a such that

E[x|a] > E[x|as], if we let x̀ be such that F − F s is positive to the left of x̀ and negative to the

right of x̀ we have

σ(a)

lx(a)
≤ lx(x̀|a)

lx(a)

∫
(F (x|a)− F s(x|a)) dx ≤ − (E[x|a]− E[x|as]) .

The last expression is decreasing in a, and strictly negative for sufficiently large a. If instead l(·|a)

is concave, then using (6),

σ(a)

lx(a)
≤ l(E[x|as]|a)

lx(a)
= − 1

lx(a)

∫ x̂(a)

E[x|as]
lx(x|a)dx ≤ − (x̂(a)− E[x|as]) ≤ − (x̃− E[x|as]) .

Turning to the denominator, we have

aIa(a)

l̄x(a)
=

a

l̄x(a)

∫
l(x|a)fa(x|a)dx =

a

l̄x(a)

∫
lx(x|a)(−Fa(x|a))dx

≤ a
∫

(−Fa(x|a))dx

= aEa[x|a],

where the second inequality is by integration by parts and the inequality uses that −Fa(x|a) ≥ 0.

We are thus done since by assumption aEa[x|a]→ 0. �

Example 5 (Distributions for which PS Ceases to Bind) In each of the following param-

eterized families of distributions, constraint PS ceases to bind at high levels of effort for appropriate

choice of E[x|as].
33To see this, note that by concavity, 0 ≤ aEa[x|a] ≤ 2

(
E[x|a]− E[x|a

2
]
)
, where the rightmost term goes to zero,

since both E[x|a] and E[x|a
2
] converge to the same finite limit.
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(1) Let F (x|a) be 1− e−
x
a , let F s be arbitrary, and c be sufficiently convex that a ca(a)

c(a) ≥ θ for

some θ > 1 (as for example if c(a) = aθ for any θ > 1).

(2) Fix δ > 0, and let F (x|a) = (x+δ)a

(1+δ)a−δa on [0, 1], where δ > 0 ensures that l is bounded.

(3) Let f(x|a) = 1
af

L(x) +
(
1− 1

a

)
fH(x) on [0, 1], where fH/fL is increasing and concave.

(4) As in LiCalzi and Spaeter (2003), let F (x|a) = x+ x−x2
a+1 for x ∈ [0, 1] and a ∈ [0,∞).

(5) As in LiCalzi and Spaeter (2003), let F (x|a) = xkea(x−1) for x ∈ [0, 1] and a ∈ [0,∞).34

To see this, consider first f(x|a) = 1
ae
−x
a (as in Example 3) and let fs be arbitrary. Then, as

before Ia = 1/a2, and similarly,

σ =
1

a2

∫
fs(x)(x− a)dx =

1

a2
(Efs(x)− a) .

Thus,

lim
a→∞

σ

aIa
= lim

a→∞

Efs(x)− a
a

= −1.

But then,

lim
a→1

ca(a)

c(a)

σ

Ia
≤ θ < −1,

and we are done.

Consider now

F (x|a) =
(x+ δ)a

(1 + δ)a − δa

on [0, 1]. Then our conditions are satisfied. To see this, note that

f(x|a) =
a (x+ δ)a−1

(1 + δ)a − δa
,

and so

log f(x|a) = log a+ (a− 1) log (x+ δ)− log ((1 + δ)a − δa) .

Thus

l(x|a) =
1

a
+ log (x+ δ)− (1 + δ)a log(1 + δ)− δa log δ

(1 + δ)a − δa
,

from which l(·|a) is clearly concave, and

lx(x|a) =
1

x+ δ
∈
[

1

1 + δ
,
1

δ

]
34LiCalzi and Spaeter (2003) provide two classes of distributions satisfying MLRP and the convexity of distribu-

tion function condition (CDFC ) of which this and the previous example are lead examples. For the first class, it is
easy to find conditions under which l is convex, and so our results apply generally. Primitives for l to be concave
or convex in the second class are forbidding.
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and so we can set υ in Lemma 15 (ii) equal to δ
1+δ . It can be numerically checked that F satisfies

CDFC. Hence, E[x|a] is concave in a, and so aEa[x|a]→ 0. Finally, x̂(a) is defined by

log (x+ δ) =
(1 + δ)a log(1 + δ)− δa log δ

(1 + δ)a − δa
− 1

a

where the rhs converges to log(1 + δ), and so x̂(a) converges to 1. Hence, as long as E[x|as] < 1,

we can take x̃ ∈ (E[x|as], 1), and satisfy the relevant condition.

Consider next

f(x|a) =
1

a
fL(x) +

(
1− 1

a

)
fH(x)

where fH/fL is increasing and concave, and note that

l(x|a) =
1

a2

fH(x)
fL(x)

− 1

1
a +

(
1− 1

a

) fH(x)
fL(x)

,

from which

lx(x|a) =
1

a2

(
fH(x)
fL(x)

)
x(

1
a +

(
1− 1

a

) fH(x)
fL(x)

)2

from which it is clear that l is concave, since then the top is positive and decreasing in x, while

the bottom is positive and increasing in x. Note also that

(
fH (1)

fL(1)

)
x(

1
a

+(1− 1
a) f

H (1)

fL(1)

)2
(
fH (0)

fL(0)

)
x(

1
a

+(1− 1
a) f

H (0)

fL(0)

)2
=

(
fH(1)
fL(1)

)
x(

fH(0)
fL(0)

)
x

(
1
a +

(
1− 1

a

) fH(0)
fL(0)

)2

(
1
a +

(
1− 1

a

) fH(1)
fL(1)

)2

→

(
fH(1)
fL(1)

)
x(

fH(0)
fL(0)

)
x

(
fH(0)
fL(0)

)2

(
fH(1)
fL(1)

)2

and so we can take the constant υ in Lemma 15 (ii) to be

υ =
1

2

(
fH(1)
fL(1)

)
x(

fH(0)
fL(0)

)
x

(
fH(0)
fL(0)

)2

(
fH(1)
fL(1)

)2

Next, note that

E[x|a] =
1

a

∫
xfL(x)dx+

(
1− 1

a

)∫
xfH(x)dx
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which is clearly concave and bounded and so aEa[x|a] → 0 as desired. Finally, note from our

expression for l that x̂ is constant, and occurs where fH

fL
= 1, and so the existence of x̃ follows

any time E[x|as] occurs to the left of this point.

Next, let F (x|a) = x+ x−x2
a+1 , so that

l(x|a) =

2x−1
(a+1)2

1 + 1−2x
a+1

and so

lx(x|a) =
∂

∂x

2x−1
(a+1)2

1 + 1−2x
a+1

=
2

(a− 2x+ 2)2 .

and

lxx(x|a) =
8

(a− 2x+ 2)3

and so l is convex. Hence we can take the constant υ in Lemma 15 (ii) equal to

υ =
1

2
lim
a→∞

2
(a+2)2

2
a2

=
1

2
.

Also, clearly Faa > 0, and so E[x|a] is concave in a and, having finite support, is bounded. Thus

aEa[x|a]→ 0. Finally, x̂ = 1
2 , and so x̃ exists as long as E[x|as] < 1

2 .

Next, let F (x|a) = xkea(x−1) so that f(x|a) = xk−1ea(x−1) (k + xa). Then,

log f(x|a) = (k − 1) log x+ a(x− 1) + log(k + ax)

and hence

l(x|a) = x− 1 +
x

k + ax

from which

lx(x|a) = 1 +
k

(k + ax)2

which is decreasing in x. Thus, we can set υ in Lemma 15 (ii) equal to

υ =
1

2
lim
a→∞

1 + k
(k+a)2

1 + k
(k)2

=
1

2

k

1 + k
.

Next,

Faa(x|a) =
(
xkea(x−1)

)
aa

= xkea(x−1) (x− 1)2 > 0
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𝑎

𝛽

Figure 7: Initiative vs. Safe. On the green curve, the principal is indifferent between effort a
and the safe project. On the purple curve, she has chosen effort optimally.

Finally, x̂(a) is the solution to

0 = l(x̂(a)|a) = x̂(a)− 1 +
x̂(a)

k + ax̂(a)
,

from which lima→∞ x̂(a) = 1, and where

x̂a(a) =
x̂(a)

(k + ax̂(a))2 + k
> 0,

and so any E[x|as] < 1 will do.

C.6 A Minimal Effort in the Exponential Example

We have that

CPS(a) =
1

2

((
12 + a2

)2
+ 4a4

)
+ a4 (2a− 1)

(a− 4)2

a4e
1
a − 12a+ 10a2 − 4a3 + 4

,

and so for any α and β, the difference between implementing effort a and implementing as is

βa− CPS(a)−
(

2β − 122

2

)
.

The green line in Figure 7 plots the set of β and a where this expression equals zero, and so the

principal is indifferent between initiative and as. As can be seen, for β below around 300, the

principal is better to implement as than any level of effort under initiative. The purple line shows
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the solution to ∂
∂a(βa − CPS(a)) = 0, which gives the optimal effort to implement as a function

of β (a graph shows that CPS is convex). Since the objective function is supermodular in β and

a, optimal effort increases in β. Thus, for any β where it is worth implementing initiative, it is

worth implementing at least an initiative a little above 2.8.

C.7 Omitted Proofs from Appendix A on Section 7

Proof of Lemma 5 We have that

ϕ′(vPS(x, a, ū)) = λ+ µl(x|a)− ηls(x|a)

and so, multiplying both sides by f(x|a) and integrating yields∫
ϕ′(vPS(x, a, ū))f(x|a)dx = λ− η.

Similarly, multiplying both sides by fa(x|a) and integrating yields∫
ϕ′(vPS(x, a, ū))fa(x|a)dx = µ

∫
l(x|a)fa(x|a)dx− η

∫
ls(x|a)fa(x|a)dx

or ∫
ϕ′(vPS(x, a, ū))fa(x|a)dx = µIa(a)− ησ,

and multiplying both sides by fs(x) and integrating yields∫
ϕ′(vPS(x, a, ū))fs(x)dx = λ+ µ

∫
l(x|a)fs(x|a)dx− η

∫
ls(x|a)fs(x)dx

or ∫
ϕ′(vPS(x, a, ū))fs(x|a)dx = λ+ µσ − ηIs.

But, from the system of equations∫
ϕ′(vPS(x, a, ū))f(x|a)dx = λ− η∫
ϕ′(vPS(x, a, ū))fa(x|a)dx = µIa(a)− ησ∫
ϕ′(vPS(x, a, ū))f s(x|a)dx = λ+ µσ − ηIs

we obtain∫
ϕ′(vPS(x, a, ū))fs(x|a)dx = η+

∫
ϕ′(vPS(x, a, ū))f(x|a)dx+

(∫
ϕ′(vPS(x, a, ū))fa(x|a)dx

Ia
+
ησ

Ia

)
σ−ηIs
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and so we arrive with a little manipulation at the claimed expressions. �

We claimed in main text that, as a by product of the large ū case, we obtain the convexity

of C, a difficult property to ensure from primitives. To show this we need a few steps. To begin,

note that from the envelope theorem applied to PPS , we have

CPSa (a) =

∫
ϕ(v(x))fa(x|a)dx− µ

(∫
v(x)faa(x|a)dx− caa(a)

)
,

noting that the term in λ drops out using IC , and that a does not enter into PS . We begin with

a key lemma about the derivatives of λ, µ, and η with respect to a.

Lemma 16 (Limit Derivatives of Multipliers) Each of λa
λ , µa

λ , and ηa
λ converges to zero in

ū, and does so uniformly in a.

Proof For given a and ū where PS binds, λ, µ, and η are defined implicitly by∫
ρ(λ+ µl − ηls)f = ū+ c∫
ρ(λ+ µl − ηls)fa = ca∫
ρ(λ+ µl − ηls)fs = ū,

and so differentiating with respect to a yields∫
ρ′(λa + µal + µla − ηals − ηlsa)f +

∫
ρfa = ca∫

ρ′(λa + µal + µla − ηals − ηlsa)fa +

∫
ρfaa = caa∫

ρ′(λa + µal + µla − ηals − ηlsa)fs = 0,

where we use IC to simplify the first equation, and then rearrange so that (λa, µa, ηa) solve∫
(λa + µal − ηals)ρ′f =

∫
(ηlsa − µla)ρ′f∫

(λa + µal − ηals)lρ′f = caa −
∫
ρfaa +

∫
(ηlsa − µla)lρ′f∫

(λa + µal − ηals)lsρ′f =

∫
(ηlsa − µla)lsρ′f ,

or equivalently, dividing both sides by ϕ′
∫
ρ′f (where we take ϕ′ to mean ϕ′(ū+ c(a))), and then
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expressing things in matrix form,
1

∫
l ρ
′f∫
ρ′f

∫
ls ρ′f∫

ρ′f∫
l ρ
′f∫
ρ′f

∫
l2 ρ′f∫

ρ′f

∫
lls ρ′f∫

ρ′f∫
ls ρ′f∫

ρ′f

∫
lls ρ′f∫

ρ′f

∫
(ls)2 ρ′f∫

ρ′f


︸ ︷︷ ︸

M


λa
ϕ′

µa
ϕ′

−ηa
ϕ′

 =


∫

(ηlsa−µla)ρ′f
ϕ′
∫
ρ′f

caa−
∫
ρfaa+

∫
(ηlsa−µla)lρ′f

ϕ′
∫
ρ′f∫

(ηlsa−µla)lsρ′f
ϕ′
∫
ρ′f

 .

Consider first the column vector on the right. Note that∫
(ηlsa − µla)ρ′f
ϕ′
∫
ρ′f

=

∫ (
η

ϕ′
lsa −

µ

ϕ′
la

)
ρ′f∫
ρ′f
→ 0,

using that η
ϕ′ → 0 and µ

ϕ′ → 0, and that as CS show (and is intuitive since ρ′ converges to a

constant over the relevant range) ρ′f∫
ρ′f
→ f . Similarly,

∫
(ηlsa − µla)lρ′f
ϕ′
∫
ρ′f

→ 0 and

∫
(ηlsa − µla)lsρ′f

ϕ′
∫
ρ′f

→ 0.

Also,

−
∫
ρfaa

ϕ′
∫
ρ′f

=

∫
ρ′Faa

ϕ′
∫
ρ′f

=

∫
Faa
f ρ′f

ϕ′
∫
ρ′f

=

∫
Faa
f ξ

ϕ′
→ 0

since the top converges to
∫
Faa which is finite, and the bottom diverges. Finally, since ϕ′(ρ(τ)) =

τ we have ϕ′′(ρ(τ))ρ′(τ) = 1 and thus

caa
ϕ′(ū+ c(a))

∫
ρ′f

=
caa

ϕ′(ū+ c(a))
∫

1
ϕ′′(ρ)f

=
caa∫ ϕ′(ū+c(a))

ϕ′(ρ)
ϕ′(ρ)
ϕ′′(ρ)f

→ 0,

since ϕ′(ρ)
ϕ′′(ρ) →∞, and ϕ′(ū+c(a))

ϕ′(ρ) → 1. Thus, the right side converges to the zero vector.

But, since ρ′f∫
ρ′f
→ f ,

M →M lim ≡

∣∣∣∣∣∣∣
1 0 1

0 Ia σ

1 σ Is

∣∣∣∣∣∣∣ .
The determinant of M lim is Ia(Is − 1) − σ2 which is strictly positive by Lemma 2. Hence M lim

is invertible, and the unique solution to the system

M lim

 τ1

τ2

τ3

 =

 0

0

0


is τ1 = τ2 = τ3 = 0. But then, for ū large, |M | is also strictly positive, and hence the solution to
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the system of equations is continuous as ū diverges. Thus λa
ϕ′ → 0, µa

ϕ′ → 0, and ηa
ϕ′ → 0. �

Proof of Lemma 6 Write v(x) where we more properly mean vPS(x, a, ū). Using Lemma 5,

start from

η =
−Ia

∫
ϕ′(v(x)) [(fs(x)− f(x|a))] dx+

∫
ϕ′(v(x)) [σl(x|a)] f(x|a)dx

Ia (Is − 1)− σ2

and integrate by parts and divide by ϕ′′(ū+ c(a)) to arrive at

η

ϕ′′(ū+ c(a))
=
−Ia

∫ ϕ′′(v(x))
ϕ′′(ū+c(a))vx(x)(F (x|a)− F s(x|a))dx+ σ

∫ ϕ′′(v(x))
ϕ′′(ū+c(a))vx(x)(−Fa(x|a))dx

Ia (Is − 1)− σ2
.

But, by IR and continuity of v(·), we must have v(x) = ū+c(a) for some x. Hence, since a ∈ [0, 1],

v(x) ∈ [ū− J, ū+ c(1) + J ] for all x. But then, using CS, Lemma 1, ϕ′′(v(x))
ϕ′′(ū+c(a)) → 1 as ū diverges,

and does so uniformly in a. Thus, uniformly in a,

η

ϕ′′(ū+ c(a))
→
−Ia

∫
vx(x)(F (x|a)− F s(x|a))dx+ σ

∫
vx(x)(−Fa(x|a))dx

Ia (Is − 1)− σ2
,

where we observe that∫
vx(x)(F (x|a)− F s(x|a))dx =

∫
v(x))(fs(x|a)− f(x|a))dx = ū− (ū+ c(a)) = −c(a)

and
∫
vx(x)(−Fa(x|a))dx = ca(a), and so

η

ϕ′′(ū+ c(a))
→ c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2

uniformly in a. As a reality check, for the square root case where u =
√

2w we have ϕ′′ = 1, and

so this expression agrees with the one derived for that case.

Continuing, we then have that

lim
ū→∞

λ

ϕ′(ū+ c(a))
= lim

ū→∞

∫
ϕ′(v(x))

ϕ′(ū+ c(a))
f(x|a)dx− lim

ū→∞

(
ϕ′′(ū+ c(a))

ϕ′(ū+ c(a))

c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2

)

and so, since ϕ′′

ϕ′ → 0 uniformly in a, and ϕ′(v(x))
ϕ′(ū+c(a)) → 1 uniformly in a,

λ

ϕ′(ū+ c(a))
→ 1

uniformly in a. This also agrees with the square root case, since in that case, ϕ′(ū+c(a)) = ū+c(a).
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Finally,

µ =

∫
ϕ′(v(x))fa(x|a)dx

Ia
+
ησ

Ia
=

∫
ϕ′′(v(x))vx(x) (−Fa(x|a)) dx

Ia
+
ησ

Ia

and so

µ

ϕ′′(ū+ c(a))
=

∫ ϕ′′(v(x))
ϕ′′(ū+c(a))vx(x) (−Fa(x|a)) dx

Ia
+ lim
ū→∞

η

ϕ′′(ū+ c(a))

σ

Ia

from which, since ϕ′′(v(x))
ϕ′′(ū+c(a)) → 1 uniformly in a, using that

∫
vx(x) (−Fa(x|a)) dx = −ca(a), and

using our limiting expression for η
ϕ′′ , we have that uniformly in a,

µ

ϕ′′(ū+ c(a))
→ ca(a)

Ia
+
c(a)Ia + ca(a)σ

(Is − 1)Ia − σ2

σ

Ia
=

(Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2
.

which once again agrees with the square root case.35 The expressions for the multipliers for vMH

are proven in CS by similar techniques. �

We are now ready to prove the following result on the first and second derivatives of C as

ū diverges. Since caa is strictly positive, it will follow from the proposition that C is eventually

convex in a for sufficiently large ū.

Proposition 3 (Limits of Derivatives of C) Let Assumption 1 hold. As ū diverges, then uni-

formly in a,
CPSa (a)

ϕ′(ū+ c(a))ca(a)
→ 1, and

CPSaa (a)

ϕ′(ū+ c(a))caa(a)
→ 1.

Proof Note that

Ca(a)

ϕ′(ū+ c(a))ca(a)
=

∫
ϕ(v(x))fa(x|a)dx− µ

(∫
v(x)faa(x|a)dx− caa(a)

)
ϕ′(ū+ c(a))ca(a)

=

∫
ϕ(v(x))fa(x|a)dx

ϕ′(ū+ c(a))ca(a)
− µ

∫
v(x)faa(x|a)dx− caa(a)

ϕ′(ū+ c(a))ca(a)
.

35As a reality check, note that

Is =

∫
ls(x|a)fs(x)dx =

∫ (
fs(x)

f(x|a)

)2

f(x|a)dx

which is convex in the term in parentheses. Hence,∫ (
fs(x)

f(x|a)

)2

f(x|a)dx ≥
(∫

fs(x)

f(x|a)
f(x|a)dx

)2

= 1.

It follows that µ is positive.
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Now,

∫
ϕ(v(x))fa(x|a)dx

ϕ′(ū+ c(a))ca(a)
=
−
∫ ϕ′(v(x))
ϕ′(ū+c(a))vx(x)Fa(x|a)dx

ca(a)
→
−
∫
vx(x)Fa(x|a)dx

ca(a)
= 1,

and so it is enough to show that the second fraction converges to 0. Note that

0 ≥
∫
v(x)faa(x|a)dx− caa(a)

= −
∫
vx(x)Faa(x|a)dx− caa(a)

≥ −max
a,x
|Faa(x|a)|

∫
vx(x)dx−max

a
caa(a)

≥ −J max
a,x
|Faa(x|a)| −max

a
caa(a)

using Lemma 8 and so
∣∣∫ v(x)faa(x|a)dx− caa(a)

∣∣ is uniformly bounded.

So, consider

µ

ϕ′(ū+ c(a))ca(a)
=

µ

ϕ′′(ū+ c(a)) (Is−1)ca(a)+σc(a)
(Is−1)Ia−σ2

ϕ′′(ū+ c(a)) (Is−1)ca(a)+σc(a)
(Is−1)Ia−σ2

ϕ′(ū+ c(a))ca(a)

=
ϕ′′(ū+ c(a))

ϕ′(ū+ c(a))

µ

ϕ′′(ū+ c(a)) (Is−1)ca(a)+σc(a)
(Is−1)Ia−σ2

Is − 1 + σ c(a)
ca(a)

(Is − 1)Ia − σ2
.

The first fraction converges to 0 by Assumption 1, while the second converges uniformly to 1

using Lemma 6, and so it is enough that the third fraction has bounded absolute value. But,

the denominator of the third fraction is bounded away from zero, since (Is − 1)Ia − σ2 is strictly

positive everywhere and continuous, Is is bounded by assumption, and c(a)
ca(a) ≤ 1 since c is convex,

and we have established the claimed form of CPSa .

To analyze CPSaa , note from our expression for CPSa , that it follows that

CPSaa (a) =

∫
ϕ′(v)vafa +

∫
ϕ(v)faa − µ

(∫
v(x)faaa − caaa

)
− µ

∫
vafaa − µa

(∫
v(x)faa(x|a)dx− caa

)
,

and we shall be interested in the limiting behavior of

CPSaa
ϕ′(ū+ c)caa(a)

.

Note first that the bracketed term in the fifth term is finite as argued above, and similarly for the
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bracketed term in the third term. But then, since,

µ

ϕ′(ū+ c)
→ 0, and

µa
ϕ′(ū+ c)

→ 0,

we can dispense with the third and fifth terms without loss. Integrate the second term by parts,

and make the substitution

ϕ′(v) = λ+ µl − ηls

to arrive at

CPSaa
∼= λ

∫
vafa + µ

∫
valfa − η

∫
lsvafa

+ λ

∫
vx (−Faa) + µ

∫
vxl (−Faa)− η

∫
vxl

s (−Faa)− µ
∫
vafaa.

The term µ
∫
vxl (−Faa) ≤ µJ maxa,x |lFaa|, and so disappears on division by ϕ′(ū), and similarly

for η
∫
vxl

s (−Faa). But,
∫
vfa = ca is an identity, and so, differentiating,∫

vafa = caa −
∫
vfaa = caa +

∫
vxFaa.

Making this substitution and cancelling the two terms involving
∫
vxFaa,

CPSaa
∼= λcaa + µ

∫
valfa − η

∫
lsvafa − µ

∫
vafaa.

Note next that

la =

(
fa
f

)
a

=
faaf − f2

a

f2

and so

fla = faa −
f2
a

f
= faa − lfa.

Substituting this in the second term and then cancelling with the last term,

CPSaa
∼= λcaa − µ

∫
vafla − η

∫
lsvafa.

Since for large ū the multiplier λ behaves like ϕ′(ū+ c), we would be done if we can show that

µ

λ

∫
vafla −

η

λ

∫
lsvafa → 0,

for which it is enough that µ
λ

∫
vafla and η

λ

∫
lsvafa each go to zero. Consider the first. Expanding
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va and then multiplying and dividing by
∫
ρ′f gives that

µ

λ

∫
vafla = µ

∫
ρ′f

∫ (
λa
λ

+
µa
λ
l − ηa

λ
ls +

µ

λ
la −

η

λ
lsa

)
la
ρ′f∫
ρ′f

.

But, since λa
λ and its ilk all converge to 0, and since ρ′f∫

ρ′f
converges to f , the second integral

converges to 0, and so it is enough to show that µ
∫
ρ′f , or equivalently,

µ

ϕ′′(ū+ c(a))
ϕ′′(ū+ c(a))

∫
ρ′f

is bounded. But we know from Lemma 6 that∣∣∣∣ µ

ϕ′′(ū+ c(a))
− (Is − 1)ca(a) + σc(a)

(Is − 1)Ia − σ2

∣∣∣∣→ 0

where the righthand ratio within the absolute value sign is independendent of ū. Hence it is enough

to know that ϕ′′(ū+ c(a))
∫
ρ′f is bounded. But,∫

ρ′f =

∫
1

ϕ′′(v)
f

and so we desire to show that ∫
ϕ′′(ū+ c(a))

ϕ′′(v)
f

is bounded. But, since maxx v
SR(x, a, ū) − minx v

SR(x, a, ū) is finite and independent of ū and

d(a, ū)→ 0, it follows from Lemma 1 in CS that that ϕ′′(ū+c(a))
ϕ′′(v) → 1 uniformly in x. �

C.8 Examples with CDFC*

The following examples, which satisfy CDFC, also satisfy the condition of Faa being single peaked

and strictly positive at interior outputs, and hence satisfy CDFC*.

Example 6 Let F (x|a) = x+ x−x2
a+1 for x ∈ [0, 1] and a ≥ 0. Then, Faa is single-peaked with peak

at x = 1/2. Let F (x|a) = xkea(x−1) for x ∈ [0, 1] and a ∈ [0,∞). Then, Faa is single-peaked, with

peak at or above k
k+2 . Finally, let F (x|a) = xa+β for x ∈ [0, 1] and a ≥ 0, where β > 0. Then,

Faa is single-peaked with peak at e
− 2
a+β ≥ e−

2
β .

The case F (x|a) = x+x−x2
a+1 is straightforward. If F = xkea(x−1), then Faa = xk (x− 1)2 ea(x−1).

We want to show that this is strictly single-peaked. Since Faa is zero at x = 0 and 1, it follows

that Faa has an interior critical point. It is enough to show that any such interior critical point
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is a strict local maximum. But,

faa = xk−1ea(x−1) (1− x)
(
−2x+ k (1− x)− ax2 + ax

)
=s k + ax− 2x

1− x
≡ j(x, a, k),

and so, since k ≥ 0, where faa = 0, we have 2 ≥ a (1− x). But then, where faa = 0,

faax = ((k + ax) (1− x)− 2x)x = a− k − 2ax− 2

≤ a− k − 2ax− a (1− x) = −k − ax < 0.

Note also that j(·, a, k) is strictly concave, with j(0, a, k) = k > 0, and with j tending to −∞
as x tends to one. Hence, j(·, a, k) crosses zero once and is strictly decreasing where it does so.

But then, when a is increased, the crossing point moves to the right. Hence the solution x to

j(·, a, k) = 0 is smallest when a is zero and thus x = k
k+2 .

Finally, let F (x|a) = xa+β. Then,

faa(x|a) = xa+β−1 (lnx) (β lnx+ a lnx+ 2) =s − (β lnx+ a lnx+ 2) ,

where the last object has derivative − 1
x (a+ β) < 0. Hence, Faa is single-peaked, with peak at

e
− 2
a+β ≥ e−

2
β .
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