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ABSTRACT. We characterize the extreme points of the set of incentive-compatible
mechanisms for screening problems with linear utility. Our framework subsumes
problems with and without transfers, such as monopoly pricing, principal-optimal
bilateral trade and barter exchange, delegation and veto bargaining, or belief
elicitation via proper scoring rules. In every problem with one-dimensional
types, extreme points admit a tractable description. In every problem with
multi-dimensional types, extreme points are dense in a rich subset of incentive-
compatible mechanisms, which we call exhaustive mechanisms. Building on these
characterizations, we derive parallel conclusions for mechanisms that can be
rationalized as (uniquely) optimal under a fixed objective. For example, in the
multi-good monopoly problem, mechanisms that uniquely maximize revenue for
some type distribution are dense among all incentive-compatible and individually
rational mechanisms. The proofs exploit a novel connection between menus of

extreme points and indecomposable convex bodies, first studied by Gale (1954).
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1. INTRODUCTION

Much of the mechanism design literature assumes that agents’ preferences can
be described by a single dimension of private information. Under this assumption,
the theory has delivered remarkably clean predictions for optimal mechanisms
across various applications. However, private information is often inherently multi-
dimensional, for instance, in allocation problems with multiple heterogeneous goods
or collective decision problems with several alternatives. The literature highlights
various forms of complexity of optimal mechanisms in multi-dimensional problems,
but explicit descriptions of optimal mechanisms have not been obtained outside of
a few special cases.’

This paper characterizes the structure of optimal mechanisms for the class of
multi-dimensional linear screening problems. In these problems, a principal chooses
an allocation that affects their own and an agent’s utility. Both parties’ utilities
are linear in allocations and depend on the agent’s private information, their type.
The principal designs a mechanism to maximize their expected utility given a belief
about the agent’s type. Linear screening covers various problems with and without
transfers such as monopoly pricing, principal-optimal bilateral trade and barter
exchange, delegation and veto bargaining, or belief elicitation via proper scoring
rules.

Our main results characterize the extreme points of the set of incentive-compatible
(IC) mechanisms for linear screening problems. Since the principal maximizes
a linear functional—their expected utility—over the set of IC mechanisms, an
optimal mechanism can always be found among the extreme points. Thus, extreme
points form a candidate set to which the principal can restrict their search for
an optimal mechanism, regardless of their utility function and belief.? It is in
this sense that determining the structure of optimal mechanisms is tantamount to
determining the structure of the extreme points.

The main insight is that in every problem with one-dimensional types, the set of
extreme points admits a tractable characterization (Theorem 1), whereas in every

problem with multi-dimensional types, the set of extreme points is virtually as

For solutions to special cases, see Wilson (1993), Armstrong (1996), Rochet and Choné (1998),
Manelli and Vincent (2006), and Daskalakis et al. (2017); for different forms of complexity of
optimal mechanisms, see e.g. Manelli and Vincent (2007), Daskalakis et al. (2014), Hart and
Reny (2015), and Hart and Nisan (2019).

2Without any restrictions on the principal’s utility function, the set of extreme points is essentially
the smallest candidate set to which the principal can restrict attention. Straszewicz’s theorem says
that a dense subset of extreme points is exposed, i.e., the unique maximizer of some continuous
linear functional (e.g., Klee Jr (1958)). Any continuous linear functional can be generated
by choosing an appropriate utility function for the principal (given any fully supported type
distribution), so every candidate set necessarily contains the exposed points.
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rich as the set of all IC mechanisms (Theorem 2). Specifically, we identify and
characterize a rich set of IC mechanisms, which we call exhaustive mechanisms, and
show that the extreme points are (L'-)dense in this set whenever types are multi-
dimensional. We provide a simple procedure by which an exhaustive mechanism
can be perturbed into an extreme point (Theorem 3).

We demonstrate in several applications that our main qualitative insights obtain
even if the principal’s utility function is fixed and only the principal’s belief is
considered a free parameter. We define an IC mechanism to be weakly (strongly)
rationalizable with respect to a given utility function for the principal if there exists
a belief for which this mechanism (uniquely) maximizes the principal’s expected
utility. We characterize weakly and strongly rationalizable mechanisms in sample
applications to monopoly pricing, delegation, and veto bargaining. The strongly
rationalizable mechanisms, despite being a subset of the extreme (and exposed)
points, remain very rich whenever types are multi-dimensional. For example,
in the classical multi-good monopoly problem, the set of strongly rationalizable
mechanisms is dense in the set of all incentive-compatible and individually rational
mechanisms (Theorem 5).

These results speak to the capabilities and limitations of the classical Bayesian
mechanism design paradigm. An important pillar for the success of the theory is
that, in many applications, it makes predictions for optimal mechanisms that are
independent of the underlying model parameters. In our setting, these parameters
are the principal’s utility function and the type distribution. Our results confirm
that the theory is able to make sharp predictions about optimal mechanisms for one-
dimensional linear screening problems. At the same time, our results demonstrate
that the theory can rationalize virtually all IC mechanisms as uniquely optimal in
multi-dimensional linear screening problems. As shown in the applications, this
holds even if the principal’s utility function is fixed. To the extent that the type
distribution is unobservable to an analyst, the Bayesian model yields virtually
no testable implications in multi-dimensional problems. And to the extent that
a designer may be uncertain about the type distribution, the model gives little
normative guidance for how an optimal mechanism should be designed.

The extreme-point approach applied here has seen successful applications in
a number of mechanism design settings, but with the exception of Manelli and
Vincent (2007) (MV), it has not been applied to settings with multi-dimensional
types. We significantly extend MV’s analysis along several dimensions. Our explicit
characterizations of extreme points, in particular their denseness in the exhaustive

mechanisms, and our characterizations of rationalizable mechanisms are novel, as



are the conclusions that can be drawn from these results. We provide a detailed
comparison with MV and situate our results within the literature in Section 8.
At the heart of our arguments is a literature in geometry studying extremal
elements of spaces of convex sets.> Convex sets correspond to menus which
the principal might offer to the agent. We prove a strong version of the taxation
principle: the spaces of IC mechanisms, convex menus, and indirect utility functions
are affinely isomorphic (Lemma 3). This allows us to transfer several fundamental

results from the mathematical literature.

Structure of the Paper. Section 2 introduces relevant notation and mathematical
definitions. Section 3 introduces the model. Section 4 defines and characterizes
exhaustive mechanisms, the set of mechanisms in which extreme points are dense
in multi-dimensional problems. Section 5 presents our main results about extreme
points, along with several supporting results about the structure of extreme points.
Section 6 discusses applications to monopoly pricing, delegation, veto bargaining,
and other problems and identifies the rationalizable mechanisms in the three main
applications. Section 7 introduces the relevant mathematical tools and sketches
the proofs of all results. Section 8 discusses the literature in detail. Section 9

concludes. Appendices A.1 to A.4 contain all proofs in chronological order.

2. NOTATION AND MATHEMATICAL DEFINITIONS

Let E be a normed vector space. For X C FE, we denote by int X, bndr X, cl X,
conv X, cone X, and aff X the interior, boundary, closure, convex hull, conical hull,
and affine hull of X, respectively. Suppose X C FE is convex. ext X denotes the set
of extreme points (vertices) of X, i.e., those z € X for which z = A2'+(1—\)z”
and A € (0,1) implies x = 2’ = 2”. exp X denotes the set of exposed points of X,
i.e., those x € X for which there exists a continuous linear functional f : F — R
such that f(z) > f(2') for all 2’ € X, x # 2’. Every exposed point is extreme, but
the converse is not generally true. A face F' of X is a convex subset of X such that
forall z € F, 2/,2” € X, and A € (0,1), z = A2’ + (1 — \)z” implies 2/, 2" € F.
Suppose £ = R?. A polyhedron P is the intersection of finitely many closed
halfspaces, a polytope is a bounded polyhedron, and a polyhedral cone is a
polyhedron that is also a cone (i.e., closed under multiplication with non-negative
scalars). A facet I’ of P is a face of P such that dim F' = dim P — 1, where
the dimension of a convex set is the dimension of its affine hull. Every subset of

Euclidean space is equipped with the Euclidean norm and the Borel sigma-algebra.

3They are referred to as indecomposable convex bodies and have been introduced by Gale
(1954). See Schneider (2014, Chapter 3.2) or Pineda Villavicencio (2024, Chapter 6) for textbook
treatments.
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3. MODEL AND PRELIMINARIES

Allocations and Preferences. There is a principal and an agent. The principal
chooses an allocation a € A C R?. The principal’s preferences over allocations
depend on the agent’s private information, their type § € © C R?\ {0}. An agent
of type 6 € © derives utility a - # from allocation a € A. Given the agent’s type
6 € O, the principal derives utility a-v(6) from allocation a € A, where v : © — R?
is a bounded measurable function that captures the conflict of interest between

both parties.

Mechanisms. A direct mechanism is a measurable function x : © — A that asks
the agent to report their type § and then implements an allocation x(6). By the
revelation principle, it is without loss of generality to screen the agent using a

direct mechanism that is incentive-compatible (IC):
z(0)-0 > z(0)-0 V0,0 €0O. (IC)

IC means that the agent has no incentive to misreport their type. Henceforth, any
mechanism is direct. An optimal mechanism is any solution to the principal’s

problem
sup / ((0) - v(0)f(0)d6 st. (IC), (OPT)
:0—-AJ0O
where f: © — R, is a bounded probability density that describes the principal’s

belief about the agent’s type. The density can alternatively be interpreted as the
distribution of types in a continuous population.* We can easily incorporate certain

types of individual rationality constraints into the analysis; see Remark 1 below.

Assumptions. We assume that the allocation space A is a d-dimensional polytope,
and the set {\0 | § € ©, A € R, } of all rays through the type space © is a d-
dimensional polyhedral cone.® We say that the type space is unrestricted if
cone ® = R? Note that types on the same ray from the origin have the same

preferences over the allocations in A. Therefore, we shall select from each ray

4Under this interpretation, certain population-level constraints such as budget- or capacity
constraints may arise naturally. They can be handled via a result due to Winkler (1988).
Winkler’s result implies that the extreme points of the set of IC mechanisms subject to k affine
constraints are convex combinations of at most k + 1 extreme points of the unconstrained set of
IC mechanisms.

"The restriction to polyhedral rather than convex sets is for technical convenience. If the
dimensions of A and cone ® did not match, then there would either be allocation directions
orthogonal to the type space (and hence all types would be indifferent to these directions) or there
would be type directions orthogonal to the allocation space (and hence the agent’s preferences
would not change in these directions). We implicitly prune these orthogonal directions from the
model.
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R.6 = {A0 | A € R,} a representative type. Without loss of generality, we
henceforth assume one of two normalizations:

(1) non-transferable utility: © C ST ! ={y e R : |jy|| = 1};

(2) transferable utility: for each § € ©, 6; = —1, i.e., the last allocation
dimension is interpreted as a numeraire for which the agent has a known
marginal utility. It then makes sense to also assume that v(6) = (..., 1) for
all# € ©, and A = A x [—Kp, Ka), where £, and k, are the principal’s and

the agent’s endowment of numeraire, respectively.

Given normalized types, a d-dimensional allocation space A corresponds to a
(d — 1)-dimensional type space ©.° We equip the type space with the canonical

(d — 1)-dimensional (Hausdorff) measure.

Menus and Payoff-Equivalence. By the taxation principle, instead of designing
a mechanism, the principal can equivalently offer the agent a menu (or delegation
set) M C A. Any choice function z(6) € arg max,¢,; a - 6 defines an IC mechanism
x: O — A. The value function U(0) = 0 - x() is the agent’s indirect utility
function associated with the mechanism x. Mechanisms defined by the same
menu are payoff-equivalent, that is, the associated indirect utility functions are
the same. For IC mechanisms, payoff-equivalence is equivalent to equality almost
everywhere.” Thus, payoff-equivalent mechanisms also yield the same expected
utility to the principal (because the belief is given by a density f). We identify
payoff-equivalent mechanisms, that is, z = z’ if z(0) = 2/(6) for almost every

6 € O, and write X for the set of payoff-equivalence classes of IC mechanisms.®

In Appendix A.4.1 (Lemma 13), we show that X is L'-compact. Therefore, a
solution to (OPT) exists and, since X" is convex, can be found among the extreme
points ext X of X. We refer to the essential range” of a mechanism =z € X as

its essential menu menu(z). Compared to the range x(0), the essential range

6Contrary to other notions of one-dimensionality in the mechanism design literature (see, e.g.,
Borgers (2015, Chapter 5.6)), a one-dimensional type space need here not imply a linear order on
the underlying preferences. For example, © = S! may be a circle.

"Payoff-equivalent IC mechanisms are subgradients of the same indirect utility function (Lemma 3).
Indirect utility functions are convex, in fact, sublinear on cone © (convex and 1-homogeneous),
hence differentiable almost everywhere. Thus, payoff-equivalent mechanisms are equal almost
everywhere. Conversely, knowing almost everywhere any subgradient of a sublinear function
suffices to uniquely determine the function itself.

8Alternatively, we could assume a tie-breaking rule for the agent; see an earlier version of this paper,
in particular, Figure 6 and the remark thereafter, for further discussion (arXiv:2412.00649v1).
9The essential range of a measurable map x : © — A is the support of the distribution on A
induced by x:

menu(z) = {a € A | 27(A) has non-zero measure for all open neighborhoods A > a}.

Equivalently, for the associated indirect utility function U, menu(z) = cl{VU(#)
U is differentiable at 6}. See Lemma 3 in Section 7.
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filters out allocations made only to the measure zero set of indifferent types. For
instance, if the menu size | menu(z)| is finite, then the essential menu is the set
of allocations that are made by the mechanism with strictly positive probability
(cf. Daskalakis et al. (2017, Definition 7)). For brevity, we henceforth omit the

qualifier “essential.”

Remark 1 (Individual Rationality). In some screening problems, there may be a
veto allocation a € A that the agent can enforce unilaterally. For these problems,
the revelation principle implies that IC mechanisms = : ® — A must also be

individually rational (IR):
z(@)-0>a-0 V0coO. (IR)

Any characterization of the extreme points of the set of IC mechanisms is valid for
IC and IR mechanisms under an additional assumption. Specifically, suppose there
exists a type 6 € © such that a € argmax,c 4 a -6 and, for all a € argmax, . a-0
and all 0 € ©, a-6 > a-0. This assumption, which is satisfied in all applications in
Section 6, yields the familiar structure where IR for a specific type, here 6, implies
IR for every type. Under this assumption, the extreme points of the set of IC
and IR mechanisms are exactly the extreme points of the set of IC mechanisms
that also satisfy IR (in general, the latter is a subset of the former).!* Even if
the assumption is not met, our qualitative insights about multi-dimensional type
spaces remain unchanged since IR constraints only inject additional complexity

into the set of extreme points.

4. FEASIBILITY CONSTRAINTS AND EXHAUSTIVE MECHANISMS

In this section, we identify a simple necessary condition for an IC mechanism to be
an extreme point. We later show that this condition, which we call exhaustiveness,
is almost sufficient if types are multi-dimensional. Intuitively, exhaustiveness
requires that a mechanism leaves no slack in the feasibility constraints that define
the allocation space A.

To define the feasibility constraints, recall that the allocation space A is a
polytope. Thus, there exists a finite set F of facet-defining hyperplanes H =
{ye R | y-ny =cy}of A Thatis, A= {H_: H e F}, where H_. = {y €
R? | y-nyg < cy} are the associated halfspaces containing A. Each halfspace
corresponds to an affine restriction on the space of available allocations, and no
restriction is redundant given the others. For example, a quadrilateral in the plane

1076 see this, note that F = arg max,c 40 -0 is a face of A. An IC mechanism z is IR if and

only if menu(z) N F # 0. Since F is a face, if # = 12’ + 32" for IC mechanisms 2’ and z”, then
menu(z’)NF and menu(z”)NF. Hence, the decomposing IC mechanisms z’ and 2" automatically
satisfy IR.
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is described four feasibility constraints, a pentagon by five feasibility constraints,
and so forth. We denote the set of binding feasibility constraints of mechanism z
by

F(x)={H € F | menu(z) N H # 0}.

Definition 1. Mechanisms z, 2’ € X are homothetic if there exists A € R, and
t € R? such that x = Az’ +t. A mechanism = € X is exhaustive if there does not
exist another mechanism 2’ € X homothetic to x such that F(z) C F(z').

Two mechanisms are homothetic if one can be obtained from the other by positive
scaling and translation. In geometric terms, a homothety preserves the shape and
orientation of menus. In economic terms, a homothety preserves the agent’s ordinal
preferences over menu items and, in particular, the binding incentive constraints.
If a mechanism is not exhaustive, that is, further feasibility constraints can be
made binding without changing the binding IC constraints, then the mechanism

cannot be an extreme point of the set of IC mechanisms:

Lemma 1. A mechanism © € X is exhaustive if and only if there do not exist
distinct mechanisms ©’,x" € X such that ' or x” is homothetic to x and r =

1,/ 1./
2x+2x.

We proceed by characterizing the set of exhaustive mechanisms more explicitly.
As we illustrate below, this characterization can be used to infer common properties
of exhaustive mechanisms and, a fortiori, of extreme points. Recall that ny is the

normal vector of the facet-defining hyperplane H € F of the allocation space A.

Lemma 2. A constant mechanism x € X is exhaustive if and only if menu(z) = {a}

for a € ext A. A non-constant mechanism x € X is ezhaustive if and only if (1)

span{ny } wer(z) = R? and (2) (| H=0.
HeF(x)

That is, a non-constant mechanism is exhaustive if and only if the facet-defining
hyperplanes corresponding to the binding feasibility constraints satisfy two condi-
tions: (1) their normal vectors span the ambient space and (2) they have an empty
intersection. Equivalently, F(x) contains a subset of d + 1 hyperplanes of which (1)
d hyperplanes intersect in a single point a and (2) the remaining hyperplane does
not contain a. In particular, if d = 2, then a non-constant mechanism =z € X is
exhaustive if and only if |F(z)| > 3. The two conditions ensure that a mechanism
cannot be translated or scaled in a way that makes additional feasibility constraints

binding. Figure 1 illustrates.

Example 1. Suppose the allocation space A = {a € R? | Zle a; < 1} is the

unit simplex. The unit simplex is the allocation space when considering lotteries
7
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Figure 1. Illustrations of conditions (1) and (2) from Lemma 2. Left:
Condition (1) is violated by a menu touching two parallel facets of a
rectangle. The menu can be translated horizontally until it touches an
inclusion-wise larger set of facets. Right: Condition (2) is violated by a
menu that touches only two facets of a pentagon. The menu can be scaled
relative to the intersection point of the two facet-defining lines until it
touches an inclusion-wise larger set of facets.

over d + 1 alternatives or when dividing time or a budget across d + 1 options (see
Section 6 for applications). By Lemma 2, a non-constant mechanism x= € X is
exhaustive if and only if it makes all d 4 1 feasibility constraints of the simplex
binding. A feasibility constraint is characterized by those lotteries in which some
alternative is chosen with probability zero. Therefore, in economic terms, a non-
constant exhaustive mechanism must grant a strike: for each alternative, there
must be an option in menu(x) where that alternative is chosen with probability
zero. A constant mechanism is exhaustive if and only if it dictates an alternative:

menu(z) = {a} for some a € ext A.

5. MAIN RESULTS

In this section, we present our main results about the extreme points of the
set of IC mechanisms. The main insight is that the set of extreme points has a
simple structure in every problem with one-dimensional types but is virtually as
rich as the set of exhaustive mechanisms in every problem with multi-dimensional
types. For the results, recall that a d-dimensional allocation space A corresponds
to a (d — 1)-dimensional type space ©. Also recall that F is the set of feasibility
constraints defining the allocation space.

Theorem 1. Suppose d = 2. Then, every extreme point x € ext X is erhaustive
and satisfies | menu(x)| < |F|.

Theorem 1 is the essential insight of a complete characterization of the extreme
points for problems with one-dimensional types (Theorem 8 in Appendix A.2.1):
extreme points can be succinctly described as choice functions from a limited

number of menu items, akin to the well-known posted-price result for the monopoly
8



problem (Myerson (1981); Riley and Zeckhauser (1983)). The bound given in
Theorem 1 is tight for the unrestricted type space and attained by allocating to

each type one of their most preferred extreme points of the allocation space A.

Example 1 (continued). Suppose d = 2 and the allocation space is the unit
simplex. By Theorem 1, every extreme point has menu size at most three and
must either dictate an alternative or grant a strike. The complete characterization

(Theorem 8) shows that the converse holds if the type space is unrestricted.

In the multi-dimensional case, the structure of extreme points is fundamentally
different and markedly more complex. To make this point, we equip the set of IC

mechanisms X with the L'-norm
el = [ lste)1]do.
e

Intuitively, two mechanisms z, 2’ € X are “close” under this norm if the allocations
x(0) and 2'(0) are “close” under the Euclidean norm for all but a vanishingly small
measure of types § € ©. We say that a property holds for most elements of a
subset of a topological space if it holds on a dense set that is also a countable
intersection of relatively open sets (i.e., a dense Gy); this is a standard notion of

topological genericity.

Theorem 2. Suppose d > 3. Then, every extreme point of the set of IC mechanisms

18 erhaustive and most exhaustive IC mechanisms are extreme points.

Example 1 (continued). Suppose d > 3 and the allocation space is the unit
simplex. By Theorem 2, the set of extreme points is dense in the set of mechanisms

that dictate an alternative or grant a strike.

A key implication of Theorem 2 is that, without any restrictions on the principal’s
objective v : © — R%, only few mechanisms can be ruled out as candidates for an
optimal mechanism in any given multi-dimensional problem. Specifically, it follows
from Straszewicz’s theorem (e.g., Klee Jr (1958)) and the Riesz representation
theorem (e.g., Diestel and Uhl (1977, Theorem IV.1.1)) that, for every exhaustive
mechanism x € X, every belief density f with full support, and every € > 0, there
exists a mechanism 2’ € X and an objective v such that ||z — 2/||; < € and such
that 2’ is uniquely optimal given v and f. For the applications below (Section 6),
we show that the same conclusion holds, with only minor application-specific
adjustments, if instead the objective v is fixed and the belief density f is considered
a free parameter. This conclusion contrasts sharply with Theorem 1 and, more
generally, with the many parameter-independent predictions that mechanism design

theory has delivered for one-dimensional problems.
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Since exhaustiveness is a property of binding feasibility constraints, Theorems 1
and 2 together show that properties of binding incentive constraints further dis-
cipline the set of exhaustive mechanisms if and only if the type space is one-
dimensional. Thus, our results corroborate the heuristic understanding in the
mechanism design literature that the difficulty with multi-dimensional screen-
ing lies in identifying the incentive constraints that are binding in an optimal

mechanism.

5.1. Additional Results. We present more fine-grained results about extreme
point mechanisms in multi-dimensional problems. While Theorem 2 shows that
extreme points are dense in the set of exhaustive mechanisms, denseness alone
leaves open whether the complexity of the set of extreme points can be curbed by
restricting attention to “simple” mechanisms.

We first provide a genericity condition, together with a minor additional condition,
under which an exhaustive finite-menu mechanism is an extreme point, ruling out
the idea that simple extreme points are particularly special. For a mechanism
x € X, we say that menu(x) is in general position if every affine subspace of
R? of dimension 1 < k < d — 1 intersects menu(z) in at most k + 1 points. We
say that menu(z) is non-separating if, for every allocation a € menu(z), the set
{0 € © | a ¢ argmaxc o) @ 0} is connected. Non-separation requires that no
subset of types that pool on the same option separate the type space into two

components.

Theorem 3. Suppose d > 3. If v € X is exhaustive and menu(zx) is finite, in

general position, and non-separating, then x € ext X.

If the type space O is unrestricted, that is, cone © = R?, it is readily verified
that every mechanism z € X automatically has a non-separating menu. If the
type space is restricted, then non-separation is close to necessary for an exhaustive
mechanism to be an extreme point, in a sense made precise in Lemma 6 (Section 7).

Since generic finite subsets of Euclidean space are in general position, we have:

Corollary 1. Suppose d > 3. For every k € N, within the set of exhaustive
mechanisms of menu size k whose menus are non-separating, the subset of extreme

points s relatively open and dense.

Moreover, one obtains a non-separating menu by splitting menu items that

separate the type space into two almost identical copies of itself. Thus:

Corollary 2. Suppose d > 3. The set of extreme points of finite menu size is

dense in the set of exhaustive mechanisms.
10



These results demonstrate that the complexity of the set of extreme points
cannot be avoided by restricting attention to mechanisms that make only a limited
number of allocations. Nevertheless, finite-menu extreme points are nowhere near

sufficient to describe the full set of extreme points:

Theorem 4. Suppose d > 3. Most exhaustive mechanisms are extreme points of

uncountable menu size.

The proof of Theorem 4 establishes the stronger claim that most exhaustive
mechanisms are continuous functions (for which the menu is a connected subset
of the allocation space). While examples of extreme points with uncountable
menu size have been documented in the literature (Manelli and Vincent (2007);
Daskalakis et al. (2017)), the existence and prevalence of continuous extreme points

is novel.

6. APPLICATIONS

In this section, we discuss the implications of our general insights for specific
applications. We focus on monopoly pricing, delegation, and veto bargaining, and
briefly discuss other applications at the end of this section.

In these applications, the principal’s objective v : © — R? is given (e.g., revenue
maximization), and only the principal’s belief f about the agent’s type is treated as
a free parameter. The challenge in transferring our general insights about extreme
points to any given application with a fixed objective is that an extreme point of
the set of IC mechanisms need not be optimal with respect to that fixed objective
for any belief about the agent’s type.

The main takeaway is that the qualitative insights about extreme points continue
to hold, with only minor application-specific adjustments, even if one restricts
attention to those extreme points that can actually be optimal-—even uniquely
optimal—for the given objective. To make this point precise, we define and analyze
rationalizable mechanisms.

Henceforth, whenever an application features a veto allocation a € A for the
agent, we refer to X as the set of (payoff-equivalence classes) of (IC) and (IR)

mechanisms.

Definition 2. For a given objective v : © — RY, a mechanism x € X is weakly
rationalizable if there exists a bounded belief density f such that x maximizes

Jo (v(8) - y(0)) f(0)d6 over all y € X. It is strongly rationalizable if, in addition,
11



z is the unique maximizer of [g (v(#) - y(0)) f(#)d6 over all y € X (up to payoff-

equivalence).!

Strongly rationalizable mechanisms play a central role in mechanism design. A
key step in solving any Bayesian mechanism design problem is to reduce the set of all
mechanisms to a smaller candidate set among which an optimal mechanism can be
found for every possible type distribution. Comparative statics with respect to the
type distribution are then performed within this set. Any candidate set necessarily
contains the strongly rationalizable mechanisms. Conversely, in our applications, an
optimal mechanism can always be found in the closure of the strongly rationalizable
mechanisms.'? Thus, the strongly rationalizable mechanisms essentially form the
minimal candidate set. In particular, the common properties of strongly rationaliz-
able mechanisms correspond to the possible parameter-independent predictions
about optimal mechanisms.

Such parameter-independent predictions matter for two reasons. First, the
designer may be uncertain about the type distribution or may wish to design a
mechanism that is effective across a range of different parameters. Second, type
distributions may be difficult for an analyst to observe because they may be known
only to the entity designing the mechanism or may represent that entity’s subjective
beliefs; in such cases, the common properties of rationalizable mechanisms amount
to the empirically testable implications of the theory.

As an intermediate step in our analysis, we obtain results about weakly rational-
izable mechanisms that may be of independent interest. These mechanisms are
closely related to undominated mechanisms (Definition 5). However, we find that
weak rationalizability is much too permissive, even in one-dimensional problems.

Hence, our focus is on strong rationalizability.

6.1. Monopoly Pricing. The monopoly problem, that is, finding revenue-
maximizing mechanisms for selling multiple goods, is the most widely studied
multi-dimensional screening problem, yet widely regarded as analytically in-
tractable. We establish below for the monopoly problem that the strongly
rationalizable mechanisms are dense in the set of all IC and IR mechanisms—a
key barrier to obtaining general, explicit solutions to the problem.

The monopoly problem can be modeled within our setting as follows:

HOur results about strong rationalizability hold verbatim if the rationalizing belief density f is
required to have full support.
12Consider the image of X under the map = — v - x; this is the set of the induced indirect utility
functions of the principal, called V in Section 7. A result due to Lau (1976) implies that, for most
belief densities f € L*, there is a uniquely optimal indirect utility function in V. Combining
Lemma 9 (Section 7) with Berge’s maximum theorem yields the claim.
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o A=10,1]"x[0, ], with K > m, where the first m allocation dimensions are
the probabilities with which good i =1, ..., m is sold to the agent, and the
last allocation dimension is the payment from the agent to the principal;

e O =[0,1]™ x {—1}, i.e., the agent has valuations in [0, 1] for each good
¢t =1,...,m and money is the numeraire;

e v(f) =v=1(0,...,0,1) for all § € O, i.e., the principal maximizes expected
revenue;?

e a=(0,...,0,0), i.e., the agent can refuse to trade.

Allocations can also be interpreted as quantities or as multiple attributes of a
quality-differentiated product line with a unit-demand agent. The type density
f can be interpreted either as the seller’s belief about the valuations of a single
buyer or as the aggregate demand of a continuum of buyers.

We say that a mechanism = € X excludes the lowest type if 2(0,...,0,—1) =
(0,...,0) holds for all IC and IR mechanisms Z that are payoff-equivalent to z. We
say that a mechanism =z € X has no distortion at the top in each dimension
if, for each § € © and ¢ = 1,...,m, 6; = 1 implies 7;(¢) = 1 for all IC and IR
mechanisms Z that are payoff-equivalent to x. In other words, every type willing
to pay the maximum amount for good ¢ must be allocated good 7 with probability
1 and must not be indifferent to any option where they are allocated good i with

probability less than 1.

Theorem 5. The following hold for the monopoly problem:
(1) Every IC and IR mechanism that excludes the lowest type and has no

distortion at the top in each dimension is weakly rationalizable. These
mechanisms are dense in the set of all IC and IR mechanisms.
(2) (i) Suppose there is a single good (m = 1). Every strongly rationalizable
mechanism is a posted-price mechanism with price p € (0,1).'*
(i1) Suppose there are multiple goods (m > 2). Strongly rationalizable

mechanisms are dense in the set of all IC and IR mechanisms.

Theorem 5 shows that the main qualitative insights about extreme points from
Section 5 carry over to the monopoly problem. With a single good, it is well
known (modulo terminology) that posted-price mechanisms are the only strongly
rationalizable mechanisms. The novel result here is that, with multiple goods,

every IC and IR mechanism can be perturbed into a mechanism that is uniquely

13The standard assumption of zero costs is for simplicity and can be relaxed to constant marginal
costs by translating the type space. With decreasing marginal costs, extreme points remain the
relevant candidates for optimality (see also the discussion in Manelli and Vincent (2007)). With
increasing marginal costs, one must instead follow the approach of Rochet and Choné (1998).
WThat is, #(6) = (1,p) if 6; > p and z(8) = (0,0) otherwise.
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optimal for some belief of the seller. Thus, the model makes sharp predictions
for the case of a single good but can strongly rationalize virtually all mechanisms
in the case of multiple goods. To the extent that a seller’s belief about the value
distribution is unobservable, the model can fit essentially any observation. And
to the extent that a seller may entertain several possible beliefs, the model gives
little normative guidance on what mechanism a revenue-maximizing seller should
use. We note that a broad range of mechanisms is weakly rationalizable even in
the one-good case; indeed, Choquet’s theorem implies that these are exactly the

randomizations over posted-price mechanisms with prices p € (0,1)."?

6.2. Delegation. We apply our results to a screening problem without transfers
where a principal relies on the information of a biased agent in order to make an
informed decision. Such delegation problems frequently arise in organizational

economics and political economy and can be modeled within our setting as follows:

e A={aeR?| S a; <1} is the unit simplex, i.e., the allocation space
when considering lotteries over m = d + 1 alternatives, where lotteries can
be interpreted as risky courses of action or as budget or time shares;

e O = S ! is the unrestricted type space, i.e., the agent can have all possible
von Neumann—Morgenstern preferences over the lotteries in A;

e there is no veto alternative a for the agent;

e v(f) =60 —0b, where b € R, with ||b|]| < 1 is the principal’s bias relative to
the agent (e.g., costs of the alternatives that are not internalized by the
agent).

The assumption that b € R, simply normalizes the bias so that the origin
ap = (0,...,0) is the neutral alternative, that is, it is preferred by the principal
whenever it is preferred by the agent. We say that a lottery a € A is neutral-
excluding if it yields the neutral alternative with probability zero (i.e., 2?21 a; =
1). The assumption ||b|| < 1 means the agent’s information can outweigh the
principal’s bias (since ||0|| = 1).

Our delegation problem features multi-dimensional types whenever there are
m > 4 alternatives and thus differs from the classical formulation of delegation
problems a la Holmstrém (1977), which assume one-dimensional allocation and
type spaces and single-peaked (hence non-linear) preferences; see Section 8 for

further discussion. Although our formulation of the delegation problem differs from

15Borgers et al. (2025, Theorem 1) independently obtain a similar result for the one-good case.
We also note that, without requiring absolute continuity of the rationalizing type distribution,
it is well known that a truncated Pareto distribution would rationalize any randomization over
posted-price mechanisms (and trivially, a point mass at the lowest type (0,...,0,—1) would do
as well).
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the classical formulation, it captures the same applications while accommodating

multi-dimensional preferences.

Theorem 6. The following hold for the delegation problem:

(1) Every 1C mechanism whose menu contains the neutral alternative is weakly

rationalizable.

(2) (i) Suppose there are three alternatives (m = 3). Every strongly rational-
1zable mechanism either dictates the neutral alternative or its menu
consists of the neutral alternative, a neutral-excluding lottery, and at
most one other item.

(i) Suppose there are four or more alternatives (m > 4). The strongly
rationalizable mechanisms are dense in the set of IC' mechanisms whose

menu contains the neutral alternative and a neutral-excluding lottery.

Thus, the theory makes sharp predictions for problems with three alternatives
but rationalizes a vast set of mechanisms once there are four or more alternatives.
Three-alternative problems without transfers have previously been studied as the
simplest departure from the ubiquitous two-alternative case (e.g., Borgers and Postl
(2009)); a complete characterization of optimal mechanisms in a three-alternative
problem has, to our knowledge, not been obtained before. Our novel results for the
delegation setting suggest a certain tractability of three-alternative problems but
also delineate the limits of what can reasonably be expected from optimal Bayesian
mechanism design in problems with four or more alternatives, where type spaces
become multi-dimensional. It is worth noting that, in contrast to the monopoly
problem, not all IC mechanisms can be approximated by strongly rationalizable
mechanisms; the inclusion of the neutral alternative and a neutral-excluding lottery

are discernible features of strongly rationalizable mechanisms.

6.3. Veto Bargaining. As another application, we briefly discuss a variation of
the delegation problem where the principal does not rely on the agent’s information
but must instead seek the agent’s approval to implement an alternative over
some status quo. Such veto bargaining problems with incomplete information
have recently been analyzed by Kartik et al. (2021), who build upon the classical
formulation of delegation problems. In our setting, veto bargaining can be modeled

as follows:

e A={aeR%| Zle a; < 1} is the unit simplex;
e O = S9! is the unrestricted type space;

e o =(0,...,0) is the agent’s veto alternative (e.g., a status quo);
15



e v(f) = b determines the principal’s preferences via the Bernoulli utility

vector b independently of the agent’s information.'6

We also assume that (1) b € Ry, that is, the veto alternative is the principal’s
least preferred alternative, and (2) the principal has a unique favorite alternative

a* € A (i.e., argmax; b; is a singleton).

Theorem 7. The following hold for the veto bargaining problem.:

(1) Every IC and IR mechanism whose menu contains the veto alternative a
and the principal’s most preferred alternative a* is weakly rationalizable.
(2) (i) Suppose there are three alternatives (m = 3). Every strongly rationaliz-
able mechanism has a menu that contains a, a*, and at most one other
item.
(ii) Suppose there are four or more alternatives (m > 4). The strongly
rationalizable mechanisms are dense in the set of IC and IR mechanisms

whose menu contains a and a*.

Like the delegation problem, the veto bargaining problem features the simplex
as the allocation space and an unrestricted type space, so the extreme points of the
set of IC mechanisms in both problems are the same. However, the IR constraint
and the state-independent principal utility function imply a slightly different set of

rationalizable mechanisms.
6.4. Further Applications.

Variations and Generalizations of the Monopoly Problem. Variations
include procurement from a supplier with unknown cost, where the principal acts
as a buyer, or mixed settings, where the principal is initially endowed with some
goods and the agent with the remaining goods. Removing transfers yields a barter
exchange setting. The unit-demand case of the monopoly problem, as studied for
example in Thanassoulis (2004) and Pavlov (2011), also fits into our framework by
changing the allocation space from a cube to a simplex.

These trading models can be further generalized by endowing the agent with a
separate valuation for each bundle B C {1, ..., m}, which allows for substitutability
and complementarity among goods. The allocation space is then the simplex over
all 2™ bundles, with an additional dimension for transfers. Free disposal, that
is, the willingness to pay weakly more for inclusion-wise larger bundles, can be
modeled as a family of affine restrictions on the type space. We do not pursue this
16We could also allow state-dependent preferences, e.g., add an outside option to the delegation
setting. We then obtain multi-dimensional analogues of models studied in Saran (2022), Amador
and Bagwell (2022), and Kolotilin and Zapechelnyuk (2025). This model specification would

yield very similar insights to delegation and veto bargaining regarding rationalizability.
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general model further since the additive case is standard in the literature and since

negative results already obtain for the simpler model.

Belief Elicitation. As another application, we briefly mention belief elicitation
via proper scoring rules (e.g., Gneiting and Raftery (2007)). In our framework,
belief elicitation can be modeled as follows. Take the type space © = {0 € R? |
Z?Zl 0; = 1} to be the belief simplex over d possible states. Take the allocation
space A = [0, 1] to be the unit cube, where each coordinate specifies the payment to
the agent when a particular state realizes, with the maximum payment normalized
to 1. Proper scoring rules x : © — A, which incentivize the agent to report their
belief truthfully, are equivalent to IC mechanisms.

Recent contributions by Li et al. (2022) and Kleinberg et al. (2023) investigate
problems where the principal maximizes a linear functional L : X — R over the set
of proper scoring rules.!” Thus, the extreme points of the set of proper scoring rules
are the relevant candidates for optimality. When eliciting beliefs about a binary
state (d = 2), the extreme points admit a simple characterization; in particular, if
r € X, then | menu(z)| < 3.'® However, if there are at least three states (d > 3),
the complexity of the set of extreme points suggests severe barriers to obtaining
any explicit analytic description of optimal scoring rules for any sufficiently rich

class of linear functionals that are to be optimized.

7. TECHNICAL RESULTS

In this section, we explain the most relevant technical details behind our main
results and applications. Our approach is to translate between extreme points
of the set of IC mechanisms and extreme points of the set of all menus. Menus
can be identified with convex subsets of the allocation space, allowing us to
draw upon a mathematical literature that has characterized extremal—there
called indecomposable—elements of spaces of convex sets. We also provide new
results about undominated mechanisms, which together with our extreme point
characterizations allows us to characterize strongly rationalizable mechanisms in

the applications in Section 6.

17In Li et al. (2022), a linear functional arises from maximizing the agent’s incentive to acquire
information. In Kleinberg et al. (2023), a linear functional arises from maximizing a certain
notion of forecasting regret over the set of proper scoring rules.

18Specifically, it follows from Theorem 8 that = € ext X if and only if one of the following holds: (1)
menu(z) is an extreme point of [0, 1]%; (2) menu(z) = {(1,0), (0,¢)} or menu(z) = {(¢,0), (0,1)}
for t € (0,1]; (3) menu(x) = {(1,0),(0,1), (t1,t2)} with 1 < ¢; + ¢t2 < 2. The reason why an
extreme point can have menu size three is analogous to why menu size three may be necessary in
the monopoly problem with a binding price ceiling.
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7.1. The Equivalence between Mechanisms, Menus, and Indirect Utilities.
We begin by translating from mechanism space to menu space. Recall that X is
the set of all (payoff-equivalence classes of) IC mechanisms z : © — A. Let U
denote the set of all indirect utility functions induced by the mechanisms in X’;
that is,
U={U:0—x(0)-0|zecX}.

We now define the notion of an extended menu. Intuitively, an extended menu is
obtained by adding to an existing menu M C A all allocations that make no type
strictly better off relative to M. For example, in the monopoly problem, extending

a menu means adding all allocations where the agent pays more or gets less.

Definition 3. A closed convex set M C R? with ext M C A is an extended
menu if every point in R?\ M is strictly preferred by at least one type 6 € © to
every point in M. Let M denote the set of all extended menus.

If the type space is unrestricted, that is, cone © = RY, then extended menus are
exactly the non-empty compact convex subsets of the allocation space. Otherwise,
if the type space is restricted, extended menus are closed convex sets that extend
beyond the boundaries of the allocation space, in directions where all types are

worse off. Formally, extended menus share the polar cone
°={yecR|VocO, y-0<0},

of the type space © as their common recession cone.!® We emphasize that extended
menus are a technical tool without physical meaning; the actual menu more
realistically corresponds to the set of extreme points of an extended menu.

In the following result, we show that the sets of IC mechanisms, extended
menus, and indirect utility functions are isomorphic with respect to their linear
and topological structure. To this end, we equip the set M of extended menus

with Minkowski addition and positive scalar multiplication:
AM + pM'={Xa+pd |a€ M,a € M'},

where M, M’ € M and \,p € R,.. We have equipped X with the L'-norm. We

equip U with the sup-norm and M with the Hausdorff distance.?

Recall that a bijection f : Y — Z between spaces with appropriate linear

structure is affine if it commutes with convex combinations, that is, f(Ay + (1 —

For a closed convex set K C RY, the recession cone is given by recc(K) = {y € R? | Vz €
K,y+ze K}
Wpor U € U and M,M’' € M, the sup-norm of U is given by [|U]lee =
Supgee |U(0)| and the Hausdorff distance between M and M’ is given by d(M,M') =
inf{¢ >0: M C M +eBand M' C M +¢eB}, where B = {z € R? : ||z|]| < 1} is the unit
ball in R?. The Hausdorff distance is a metric on M (Lemma 13).
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NY)=A(y)+ (1 =N f(y) for all y,y € Y and X € [0,1], and that a bijection
f Y — Z between topological spaces is a homeomorphism if f and its inverse

are continuous.

Lemma 3 (Mechanism-Menu-Utility Equivalence). The spaces X, M, and U are

affinely homeomorphic. The affine homeomorphisms are given by:

o & : X - M where x — (convmenu(x) + ©°);

o Oy : M — U where M+ (0 + sup,cpry - 0);

o O3 : U — X where U [[peq(0U(0) N A).
Moreover, for an IC mechanism v € X with associated extended menu M =
O, (z) € M and associated indirect utility function U = ®o(M) € U,

menu(x) = c{VU(0) : U is differentiable at 6} = clext M.

That is, ®; maps a (payoff-equivalence class of an) IC mechanism to the extension
of its menu; ®5 maps an extended menu to its support function (which is convex and
homogeneous of degree 1); ®3 maps an indirect utility function to its subdifferential,
where all possible selections from the subdifferential define a payoff-equivalence
class of IC mechanisms.

Lemma 3 is fundamental to our approach because the homeomorphisms between
X, M, and U map extreme points to extreme points.?! Although it is well-
known that screening problems can be approached by investigating indirect utility
functions (Rochet (1987)) or menus (the “taxation principle” due to Hammond
(1979)), we are not aware of any existing result in the economic literature that

makes the equivalence precise to the extent that we do here.

7.2. Indecomposability and Exhaustiveness. We next explain how extreme
points of the set of extended menus M can be understood via the notion of inde-
composability from the mathematical literature and the notion of exhaustiveness
defined in Section 4.

For extended menus, we say that M, M’ € M are homothetic if there exists
A€ R, and t € R? such that M = AM’' +t. M € M is exhaustive if there is
no extended menu M’ € M homothetic to M such that F(M) C F(M'), where
F(M)={H € F| HNext M # 0}. Equivalently, M € M is exhaustive if and
only if the associated mechanism x € X is exhaustive.

By definition, M € ext M if and only if there is no M', M" € M, M’ #= M",
such that M = 1M’ + 1 M”, and it is illuminating to distinguish the cases where

(1) M’ or M" is homothetic to M;

2IExtreme points are usually defined for subsets of vector spaces, which M is not. However, by
Lemma 3, M can be embedded into a vector space, which justifies our use of the term extreme
point.
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(2) M" and M"” are not homothetic to M.

It is immediate from Lemmas 1 and 3 that M cannot be written as a convex
combination of the first type if and only if M is exhaustive.

Convex combinations of the second type are closely related to the notion of
indecomposability from the mathematical literature. Let X denote the set of all
closed convex sets K C R? such that every point in R? \ K is strictly preferred by
at least one type 6 € © to every point in K. Equivalently, I is the set of all closed
convex sets in R? with recession cone recc K = ©°. K differs from M in that we

do not require ext K C A.

Definition 4. A closed convex set K € K is indecomposable if there do not
exist K', K" € K such that K = %K’ + %K” and K’ and K" are not homothetic
to K.%2

Indecomposability can be interpreted in terms of binding IC constraints. Specifi-
cally, an extended menu associated with a finite-menu mechanism is indecomposable
if and only if it is uniquely determined, up to homothetic transformations, from
its normal fan, that is, from knowing for any pair of types whether they have the
same favorite allocation(s) in the menu (and hence whether they would mimic one
another), but without knowing what these allocations are. (The details for this in-
terpretation can be found in an earlier version of this paper (arXiv:2412.00649v1).)
Equivalently, indecomposability ensures that no further IC constraints can be made
binding, whereas exhaustiveness ensures the same for the feasibility constraints.

Put together, we have:

Lemma 4. If an extended menu M € M is indecomposable and exhaustive, then

M € ext M. The converse holds if A is a simplex and © is unrestricted.

Indecomposability is not generally necessary for a mechanism to be an extreme
point. Intuitively, this is because binding incentive and feasibility constraints
jointly determine whether or not a mechanism is an extreme point. However, for
the special case where the allocation space is a simplex and the type space is
unrestricted, the role of incentive and feasibility constraints can be separated, and

indecomposability becomes necessary.

7.3. Characterizing Indecomposability. Known results about indecomposabil-
ity allow us to obtain our main results about extreme points in Section 5. We
begin with the planar case corresponding to one-dimensional types, which requires
only a minor extension of a result due to Meyer (1972) and Silverman (1973).

22The original definition due to Gale (1954) applies to compact convex sets. The extension to

closed convex sets with a common recession cone is due to Smilansky (1987).
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Lemma 5. Suppose d = 2. An extended menu M € M is indecomposable if and
only if |ext M| < 3 when © is unrestricted, and |ext M| < 2 when © is restricted.

The reason that the bound in Theorem 1 can be greater than 3 is that indecom-
posability does not yet account for feasibility constraints. Note, however, that in
the recurrent Example 1 and the applications to delegation and veto bargaining,
where the allocation space is a simplex and the type space is unrestricted, Lemmas 4
and 5 already yield a complete characterization of the extreme points for d = 2.
The complete characterization for d = 2 across all allocation and types spaces is
more involved (Theorem 8).

The higher-dimensional case also admits a complete characterization for generic

finite menus.

Lemma 6. Let M € M s such that ext M is finite and in general position. Then,

M is indecomposable if and only if ext M is non-separating.

For the proof, observe first that if ext M is finite, then M is a polyhedron by
the Minkowski-Weyl theorem since it can be written as the convex hull of its
extreme points plus the polar of the type space ©°, which is a polyhedral cone.
If an at least three-dimensional polyhedron M has its vertices ext M in general
position, then each of its bounded 2-dimensional faces is a triangle since every
plane intersects ext M in at most three points (in fact, each bounded face is a
simplex). By Lemma 5, each triangle is indecomposable by itself. If ext M is also
non-separating, then any two triangles can be connected through a sequence of
triangles such that consecutive triangles share an edge. This condition ensures
that the only polyhedra that decompose M are homothetic to M, hence M is
indecomposable (see Smilansky (1987, Theorem 5.1); Pineda Villavicencio (2024,
Theorem 6.2.22)). From Lemma 6, we can immediately deduce Theorem 3. The
denseness results in Section 5 follow since every menu of an exhaustive mechanism
can be perturbed into a non-separating menu that is also in general position by
splitting the separating menu items and moving the resulting menu into general
position, all while preserving exhaustiveness.

For polyhedra with extreme points that are not in general position, non-separation
remains necessary for indecomposability but is no longer sufficient. An explicit
geometric characterization of indecomposability for general polytopes or polyhedra,
let alone for arbitrary closed convex sets, has not been obtained in the mathematical

literature and is not to be expected.?> However, various sufficient conditions

Z3Schneider (2014, p. 166) writes: “Most convex bodies in R?, d > 3, are smooth, strictly convex
and indecomposable. It appears that no concrete example of such a body is explicitly known.
This is not too surprising, since it is hard to imagine how such a body should be described.”
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for indecomposability have been identified (see Schneider (2014, Chapter 3.2)
and Pineda Villavicencio (2024, Chapter 6)). In addition, there exist algebraic
characterizations of indecomposability that turn out to generalize the main result
in Manelli and Vincent (2007) beyond the monopoly problem (see an earlier version
of this paper (arXiv:2412.00649v1)). Since menus that are not in general position
carry no special economic significance, and since algebraic characterizations yield
no substantive economic insight beyond the explicit characterizations we have given

already, we shall not pursue these directions further.

7.4. Dominance and Weak Rationalizability. Rationalizable mechanisms,
which we characterize in the applications in Section 6, are closely connected to

undominated mechanisms.

Definition 5. A mechanism x € X is dominated by another mechanism 2’ € X
if 2/(0) - v(0) > x(0) - v(0) for almost all # € ©, with strict inequality on a set
of types of positive measure. A mechanism x € X is undominated if it is not

dominated by any other mechanism 2’ € X.

Manelli and Vincent (2007, 2012) show for the monopoly problem that every
undominated mechanism is optimal for some belief about the agent’s type. This
result can be extended from revenue maximization in the monopoly problem to

arbitrary objectives and screening problems:
Lemma 7. Fvery undominated IC' mechanism is weakly rationalizable.

Conversely, every mechanism that is optimal for some belief f with full support on
© must clearly be undominated. To obtain our results about weakly rationalizable
mechanisms in Section 6, we either characterize undominated mechanisms or provide
fairly tight sufficient conditions for a mechanism to be undominated (Lemmas 10
to 12).

The basic idea behind our results about undominated mechanisms across all
applications is as follows. If 2’ € X dominates x € X, then for the associated

indirect utility functions U’, U € U we have
Voo U'(0) 2 Vi U(0)

for almost every ¢ € ©, where V) denotes the directional derivative in direction
v(#). This is because 2’ € OU’ and = € 9U by Lemma 3. Therefore, U' — U is
non-decreasing along any integral curve*® of the vector field 6 — v(#) (modulo non-
differentiabilities addressed in the formal proofs). In the applications, dominance
implies the existence of types that receive the same allocation—hence the same

24An integral curve is a differentiable path + : [0,1] — © such that 7/(t) = v(v(t)).
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indirect utility—across all undominated mechanisms. For example, in the monopoly
problem, every undominated mechanism necessarily excludes the lowest type and
allocates the grand bundle of all goods to the highest type. Suppose all integral
curves meet the boundaries of the type space in the same types and these types
receive the same utility under both x and z’. Then, from the monotonicity of
U’ — U along the curves, we can conclude U = U’ and hence x = 2/, contradicting
the initial assumption that ' dominates x. We apply variations of this argument
in all applications.

Undominated mechanisms are of independent interest, beyond as a tool for
understanding Bayesian mechanism design, as dominance is a basic optimality
criterion across risk and ambiguity attitudes of the principal.?> However, on the
negative side, our results demonstrate that only relatively few mechanisms can be

ruled out using the dominance criterion.

7.5. Strong Rationalizability. The final step is to combine our results about
weak rationalizability with our results about extreme points to derive implications
for strong rationalizability. In the multi-dimensional case, the two sets of results
imply that the weakly rationalizable extreme points are dense in the weakly ratio-
nalizable exhaustive mechanisms.?® It remains to show that strongly rationalizable
mechanisms are themselves dense in the weakly rationalizable extreme points. To
this end, we modify Straszewicz’s theorem, which asserts that the exposed points
of a compact convex set are dense in its extreme points, to suit our particular
needs.

Let

V={0—z0) v0)]|zeXx}

denote the set of the principal’s utility functions induced by the set of (IC)
mechanisms. This set of functions © — R is L'-compact and convex because it is
a continuous image of the L'-compact convex set X (Lemma 13). Hence, like X,
one can study the extreme points of V. The advantage of working with V rather
than X is that V is naturally paired with the space of all bounded functions, that

is, signed densities, equipped with the L*°-norm.

25The criterion goes back to at least Myerson (1983). See Borgers et al. (2025) for an insightful
discussion.

26Weak rationalizability implies exhaustiveness only in some applications; in other applications,
exhaustiveness imposes additional restrictions. Note that the denseness of extreme points within
the weakly rationalizable exhaustive mechanisms does not follow from the denseness of extreme
points in the exhaustive mechanisms because the set of weakly rationalizable mechanisms has
empty relative interior. In other words, denseness alone only guarantees that every weakly
rationalizable exhaustive mechanism can be perturbed into an extreme point but not that this
extreme point is itself weakly rationalizable. To conclude the latter, a characterization of both
extreme points and weakly rationalizable mechanisms is needed.
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We say that a principal utility function V' € V has a certain property if it is
induced by a mechanism x € X with that property.

Lemma 8. The strongly rationalizable principal utility functions in 'V are dense in

the undominated principal utility functions in ext ).
We can complete the proofs by translating back from V to X:

Lemma 9. Consider the monopoly problem, delegation problem, or veto bargaining
problem. If x, 2’ € X are undominated mechanisms such that z(0)-v(0) = 2'(0)-v(0)
for almost every type 0 € ©, then x = z’.

For example, in the monopoly problem, the transfer rule of an undominated

mechanism uniquely determines the entire mechanism.

8. RELATED LITERATURE

Manelli and Vincent (2007) (MV) is the first, and prior to this paper, only
application of the extreme-point approach to multi-dimensional screening. MV
provide an algebraic characterization of extreme points for the multi-good monopoly
problem (their Theorem 24).%” From this characterization, MV deduce that extreme
points are dense within the subset of mechanisms that (1) have menu size at most
the number of goods plus one and (2) feature an exclusion region and no distortion
at the top (Remark 25). MV also show that undominated mechanisms are weakly
rationalizable in our sense (Theorem 9 and Manelli and Vincent (2012)).

Our analysis significantly extends theirs along three dimensions. First, our results
apply not only to monopoly pricing but to all linear screening problems. Second,
we provide explicit extreme point characterizations and establish the denseness
of the extreme points in multi-dimensional settings without any restriction on
menu size. Third, we obtain parallel conclusions for extreme points that are
uniquely optimal for a given principal utility function. Thus, our results reveal
a fundamental limitation of the Bayesian mechanism design framework: minor
restrictions aside, the theory is not able to make parameter-free predictions about
optimal mechanisms in a wide class of multi-dimensional problems.

The rest of the literature deploying the extreme-point approach to mechanism
design provides characterizations that apply to problems with one-dimensional
types. Manelli and Vincent (2010) use extreme points to establish the equivalence
of Bayesian and dominant strategy incentive-compatibility in standard auctions.
Kleiner et al. (2021) characterize extreme points of certain majorization sets, show
how these majorization sets naturally arise as feasible sets in many economic design
27They show that a mechanism is an extreme point if and only if a certain linear system associated

with the mechanism has a unique solution.
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problems, and consequently obtain various novel insights into these problems.
Nikzad (2022, 2024) build on the majorization approach, allowing for additional
constraints on the majorization sets. Yang and Zentefis (2024) characterize extreme
points of sets of distributions characterized by first-order stochastic dominance
constraints and apply these results to a range of problems in economic design and
other areas. Kleiner et al. (2024) characterize certain extreme points of the set of
measures that are dominated in the convex order by a given measure; their results
apply to multi-dimensional Bayesian persuasion but have no obvious applications to
mechanism design. Yang and Yang (2025) characterize extreme points of real-valued
multivariate monotone functions and their one-dimensional marginals, with various
applications to one-dimensional mechanism design; multi-dimensional problems,
however, need characterizations of the extreme points of certain sets of (cyclically)
monotone vector fields or, equivalently, of monotone convex functions, which we
implicitly provide in this paper.

The literature on multi-dimensional screening and mechanism design is too large
to summarize here. We point to a survey by Rochet and Stole (2003) for work up
to the 2000s. Recent work focuses primarily on the multi-good monopoly problem
and can be classified into several strands: finding conditions for the optimality
of common mechanisms such as separate sales or bundling;?® establishing duality
results that can be used to certify the optimality of a given mechanism;? study-
ing specific structural properties of optimal mechanisms and showing when such
structure arises;*® quantifying the worst-case performance (approximation ratio) of
common mechanisms or classes of mechanisms;*! identifying optimal robust mecha-

3

nisms under Knightian uncertainty over the set of type distributions;*? analyzing

asymptotics with respect to the number of goods or the seller’s information.®* In
general, little is known about optimal multi-dimensional mechanism design with
multiple agents;** see Section 9 for a discussion of potential implications of our

results for multi-agent settings.

ZMcAfee et al. (1989), Manelli and Vincent (2006), Fang and Norman (2006), Pavlov (2011),
Daskalakis et al. (2017), Menicucci et al. (2015), Bergemann et al. (2021), Haghpanah and
Hartline (2021), Ghili (2023), Yang (2025).
29Daskalakis et al. (2017), Kleiner and Manelli (2019), Cai et al. (2021), Kolesnikov et al. (2022),
Kleiner (2022).
30McAfee et al. (1989), Thanassoulis (2004), Manelli and Vincent (2006), Hart and Reny (2015),
Babaioff et al. (2018), Ben-Moshe et al. (2022), Bikhchandani and Mishra (2022).
31Hart and Nisan (2017, 2019), Li and Yao (2013), Babaioff et al. (2017), Rubinstein and Weinberg
(2018), Hart and Reny (2019), Babaioff et al. (2020), Ben-Moshe et al. (2022).
32Carroll (2017), Deb and Roesler (2023), Che and Zhong (2024).
33 Armstrong (1999), Bakos and Brynjolfsson (1999), Frick et al. (2025).
34Palfrey (1983), Jehiel et al. (1999), Chakraborty (1999), Jehiel et al. (2007), Kolesnikov et al.
(2022).
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Our paper is orthogonal to the recent developments in the literature on multi-
dimensional screening. We do not focus on specific properties of mechanisms or
certain classes of mechanisms or attempt to avoid intractabilities by modifying
the problem. Instead, we shed light on where these intractabilities originate and
identify the limits of the qualitative predictions that can be drawn within the
standard Bayesian framework. In this sense, our analysis provides a formal rationale
for why strong restrictions on parameters or alternative modeling approaches are
needed to make progress on multi-dimensional screening. The unified perspective
on problems with and without transfers is a distinguishing feature of our approach.

Besides the implications for optimal mechanism design, our extreme point
characterizations can also be viewed as results about implementability with multi-
dimensional types (cf. Rochet (1987), Saks and Yu (2005), and Bikhchandani et al.
(2006)) since, by Choquet’s theorem, every non-extreme IC mechanism can be
represented as a mixture over extreme points.

Our delegation and veto bargaining applications differ from the classical models
based on Holmstrém (1977, 1984) in two ways:* allocations are lotteries over
a finite set of alternatives and the agent has arbitrary vNM preferences. Like
us, Kleiner (2022) studies optimal Bayesian mechanism design in a delegation
problem with multi-dimensional type and allocation spaces and affine utilities.
Kleiner’s duality-based approach is complementary to our extreme-point approach.
Frankel (2016) studies multi-dimensional delegation with quadratic utilities in
each dimension and i.i.d. types. Assuming normally distributed types, Frankel
shows that delegation to halfspaces is optimal and, for arbitrary distributions,
approximately optimal when the number of dimensions is large. Frankel (2014)
studies this problem using a robust design approach.

Finally, we draw upon the mathematical literature on indecomposable convex
bodies. Gale (1954) introduced the concept and announced a number of results
without proof. Gale’s results have since been proven, and the literature has provided
many results that go beyond Gale’s original presentation; see Schneider (2014,
Chapter 3.2) and Pineda Villavicencio (2024, Chapter 6) for textbook treatments. In
particular, we use results due to Smilansky (1987) about indecomposable polyhedra.
Related results characterize extremal convex bodies within a given compact convex
set in the plane (Mielczarek (1998) and Grzaslewicz (1984)); see Theorems 1 and 8
for the application in our paper. Characterizations of indecomposable convex

bodies can alternatively be seen, via support function duality, as characterizations

35See Melumad and Shibano (1991), Martimort and Semenov (2006), Alonso and Matouschek
(2008), Amador and Bagwell (2013), Kleiner et al. (2021), and Kolotilin and Zapechelnyuk (2025)
for delegation and Kartik et al. (2021), Amador and Bagwell (2022), Saran (2022), and Kolotilin
and Zapechelnyuk (2025) for veto bargaining.
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of the extremal rays of the cone of sublinear (i.e., convex and 1-homogeneous)
functions. A subset of the results known in the literature on indecomposable convex
bodies have been independently obtained in studies of the extremal rays of the
cone of convex functions by Johansen (1974) (for two-dimensional domains) and

Bronshtein (1978) (for d-dimensional domains).*®

9. CONCLUSION

We have characterized extreme points of the set of incentive-compatible (IC)
mechanisms for linear screening problems. For every problem with one-dimensional
types, extreme points admit a tractable description and a tight upper bound on
their menu size. In contrast, for every problem with multi-dimensional types, we
have identified a large set of IC mechanisms—exhaustive mechanisms—in which the
extreme points are dense. We have obtained parallel conclusions about mechanisms
that can be rationalized as uniquely optimal in sample applications to monopoly
pricing, delegation, and veto bargaining, where the principal’s utility function is
fixed.

While one-dimensional problems allow us to make predictions that are indepen-
dent of the underlying model parameters, such predictions are largely unattainable
in multi-dimensional problems. To the extent that the designer may be uncertain
about model parameters such as type distributions, the theory does not provide
tangible practical guidance for how an optimal mechanism should be designed.
And to the extent that these parameters are difficult to observe for an outside
analyst, the theory yields virtually no testable implications. In this sense, our
analysis provides a formal rationale for why strong restrictions on parameters or
alternative modeling approaches are needed to make progress on multi-dimensional
screening.

While our focus has been on screening problems, where there is only a single
(representative) agent, implications of our results for multi-agent settings are to
be expected. In multi-agent settings, Bayesian incentive compatibility of a given
multi-agent mechanism is equivalent to separately requiring incentive compatibility
with respect to each agent’s interim-expected mechanism (see, e.g., Borgers (2015,
Chapter 6)). These interim-expected mechanisms, one for each agent, must then
be linked to an ex-post feasible mechanism via an appropriate analogue of the
Maskin-Riley-Matthews-Border conditions.>” Thus, if the extreme points in a
multi-agent problem were simpler than the extreme points characterized here for
36V\/etmkndreas Kleiner for pointing us to these references.
3"Maskin and Riley (1984), Matthews (1984), Border (1991). Recent treatments include Che et al.
(2013), Gopalan et al. (2018), and Valenzuela-Stookey (2023); see these papers for limitations of

the approach.
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the one-agent case, then this reduction in complexity would have to come from
these additional feasibility conditions. This is not the case for problems with
one-dimensional types (see, e.g., Kleiner et al. (2021)) and is not to be expected
for problems with multi-dimensional types.

Our main methodological contribution is to link extreme points of the set
of incentive-compatible mechanisms to indecomposable convex bodies studied
in convex geometry. This methodology, where we study incentive-compatible
mechanisms by analyzing the space of all menus from which the agent could choose,
is potentially useful in other areas of economic theory. Examples that come to
mind are menu choice a la Dekel et al. (2001) and the random expected utility
(REU) model of Gul and Pesendorfer (2006) (to which the linear screening model
is closely related). We believe that our characterizations will also prove useful for
understanding the reverse question to our approach: For which model parameters
is a given extreme point mechanism or class of extreme point mechanisms optimal?

We leave this question to future work.

APPENDIX A. PROOFS

Appendices A.1 to A.4 collect the proofs for Sections 4 to 7 in chronological order.
Appendix A.1 proves the two characterizations of exhaustiveness. Appendix A.2
provides the full characterization of extreme points for one-dimensional types
omitted from the main text and the proofs of all results about extreme points
from the main text. Appendix A.3 collects the proofs for the applications to
monopoly, delegation, and veto bargaining—in particular, the characterizations of
undominated mechanisms. Appendix A.4 proves the technical lemmas discussed in

Section 7, which are used throughout all proofs.

A.1. Proofs for Section 4.

Proof of Lemma 1. As an auxiliary step, we show that the homothety class
HC(M) = {(\,t) e Ry x R* | Next M +t C A}

of M € M is a polytope. HC(M) is bounded because A is bounded. Therefore, it
suffices to show that HC(M) is the intersection of finitely many halfspaces. Define

HC_ (M, H) ={(\t) e Rx R | Next M +t C H_}

= {(/\,t) € R x R?

A max a-nH—i—t-nHScH},

acext

where H_ = {z € Re: z-ny < cy } is the halfspace that contains A and is bounded

by the facet-defining hyperplane H € F of A. Each HC_(M, F) is a halfspace
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in R4 (with normal (maxXueexiar @ - My, ng)). Thus, letting Z = R, x R?, we
conclude that HC(M) = Z N(\yer HC_(M, H) is a polytope.

Note that (A, t) = (1,0) € ext HC(M) if and only if there do not exist M’, M" €
M homothetic to M such that M = %M’ + %M”. If M’ is homothetic to M, then
M" is also homothetic to M or M” =t + ©° for some t € R?.

Thus, we complete the proof by showing that M is exhaustive if and only if
(A, t) = (1,0) € ext HC(M). Note that (A, t) = (1,0) does not lie on the boundary
of Z. Every other halfspace HC_ (M, H) of HC(M) corresponds to a facet-defining
hyperplane H € F of A, and H € F(AM +t) if and only if (A, ¢) € bndr HC_ (M, H)
(i.e., A\maxseextpr @ - Ny + - ny = cy). By definition, M is exhaustive if there
is no (A, t) € HC(M) such that F(M) C F(AM +t). Then, by construction, M
is exhaustive if and only if (A, t) = (1,0) lies on an inclusion-wise maximal set
of facet-defining hyperplanes of HC(M). The latter condition is equivalent to
(A1) = (1,0) € ext HC(M). 0

Proof of Lemma 2. By Lemma 1, M € M is not exhaustive if and only if M has a
decomposition into homothets in M, that is, there exist M’, M € M homothetic
to M such that M = %M’ + %M”. Suppose ext M = {a} is a singleton. Then, M
has a decomposition into homothets in M if and only if a ¢ ext A. Thus, for the
remainder of the proof, assume that ext M is not a singleton.

M has a decomposition into homothets in M if and only if one of the following
holds:

(1) There exists a direction ¢ € R?\ {0} such that ext M + ¢ and ext M — ¢t are
both subsets of A (translation).
(2) There exists a point z € R? and € > 0 such that z + (1 +¢)(ext M — z) and
z 4+ (1 —¢e)(ext M — z) are both subsets of A (dilation with center z).
This is because any homothety is itself either a translation or dilation.*® We
complete the proof by showing that (1) and (2) above are equivalent, respectively,
to the negations of (1) and (2) in the statement of the lemma.

Suppose (1) holds. Then ¢ is orthogonal to all the normals of the hyperplanes
in F(M) for otherwise there is a point a € ext M N H, for some H € F(M), such
that a+t ¢ H or a —t ¢ H, which contradicts that ext M + ¢ and ext M — t are
subsets of A. Hence the spanning condition span{ngy}ugcrnny = R? is violated.
Conversely, if the spanning condition is violated, there is a direction ¢t € R?\ {0}
such that ¢ is orthogonal to all the facet normals in F(M). Then, ext M + ¢ and
ext M — t will still satisfy the facet-defining inequalities of A for ||t|| sufficiently
small, that is, ext M +t,ext M —t C A.
3Specifically, suppose M = SM’' + IM"” and M’ = z + (1 + )(M — z). Plugging in and

rearranging for M" yields M" = z 4+ (1 —¢)(M — z).
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Suppose (2) holds. Consider any H € F(M) and a € ext M N H. Then z € H,
for otherwise z + (1 4+ ¢)(a — 2) or z+ (1 —¢)(a — 2z) is not in A. Thus, since
z € H for any H € F(M) such that ext M N H # (), we have (ycznpy H # 0.
Conversely, if ﬂHef(M) H # (), choose any z € ﬂHeF(M) H. For e > 0 sufficiently
small, 2 + (1 +¢)(ext M — z) and z + (1 — ¢)(ext M — z) are both subsets of A.
This is because ext M is uniformly bounded away from facet-defining hyperplanes
H ¢ F(M) and because a € H € F(M) implies (z + (1 £¢)(a —2)) € H. O

A.2. Proofs for Section 5.

A.2.1. Extreme Points for One-Dimensional Type Spaces. In this section, we
provide the complete characterization of the extreme points for one-dimensional
problems promised in Section 5. Theorem 1 follows as a corollary.

The key concept in the characterization, a flexible chain/loop, requires auxiliary
definitions. Fix d = 2. For a given finite-menu mechanism x € X', we say that
distinct a,b € menu(z) are adjacent if there exists a type § € © such that
{a,b} = arg maxg e enu(r) @- 0. Every menu item has two neighbors in the adjacency
relation, except if the type space is restricted, in which case there are exactly two
items a, b € menu(z) with only one neighbor. For these two items, designate two
fictitious items * and **x and extend the adjacency relation by declaring that x is
adjacent only to a and ** only to b.

A sequence S = (ay,...,a,) of distinct items in menu(x) U {*,*x} with n > 2
is a chain if consecutive items are adjacent and non-consecutive items are not
adjacent. It is a loop if S lists all items in menu(x), consecutive items are adjacent,
and a; and a,, are also adjacent. (A loop necessitates an unrestricted type space.)

For a € menu(z)U{x, xx}, we say that a is inflexible if a € ext A; semi-flexible
if a € bndr A\ ext A and H Nmenu(z) = {a}, where H is the (unique) feasibility

constraint of A containing a; and flexible otherwise.

Definition 6. A chain S = (ay,...,a,) with n > 3 is flexible if each a; is flexible
or semi-flexible and both a; and a, are flexible. A chain S = (a4, as) is flexible if
the line segment ajas; ¢ bndr A and both a; and ay are flexible.

A'loop S = (ay,...,a,) is flexible if each q; is flexible or semi-flexible and at
least one of a; and a,, is flexible. A loop is also flexible if each a; is semi-flexible, n

is even, and
n n

Hsinak = Hsinﬁk, (1)
k=1 k=1
where oy, and f3;, are the angles depicted in the right panel of Figure 2.3
39Formally, fix a clock-wise ordering of the extreme points of A and of the items (ay,...,an)

in menu(z). For each k (indices modulo n), let ax—1; and ax41 be the items preceding and
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Figure 2. An illustration of flexible chains/loops and their connection
to extreme points. Left: an extended menu M (shaded) with corre-
sponding menu(z) = {a1,...,as} and flexible chain S = (a2, a3, a4, as).
Dotted lines show two deformations of M obtained by parallel shifts
of the facet—defining lines; these deformations decompose M. Right:
an extended menu M (shaded) with menu(z) = {ay,...,as4} and loop
S = (a1, az2,as,a4). The loop is not flexible because it violates the sym-
metry condition (1) on the angles ay and ;. The dotted path depicts a
candidate deformation of M. This candidate can be used to decompose
M if and only if it has no new edge orientations relative to M. This is
not the case here (a; is split into two items) and is only possible under
the symmetry condition (1).

Theorem 8. Let d =2 and x € X. Then, x € ext X if and only if either

(1) |menu(z)| < 2 and x is exhaustive or

(2) 3 < |menu(z)| < oo and menu(x) has no flexible chain or loop.

Theorem 8 is essentially a restatement of a result due to Mielczarek (1998,
Theorem 3.1). Mielczarek characterizes extremal convex bodies (i.e., the elements
of ext M when the type space is unrestricted) contained in a given convex body
in the plane (i.e., A). If the type space is unrestricted (cone® = R?), then
Mielczarek’s result applies verbatim.?® The extension to a restricted type space, in

which case the elements of M are closed convex sets that share the polar ©° as

succeeding ay, respectively. Let cd be the edge of A containing az, with ¢ preceding d. Define

C1—ap)-(c—an —ag)-(d—
a := arccos ((Z=1=ar)(e=ar) ) 00 q g arccos ([(Qkti=ar)-(dmak) )
llak—1—ax|[l[c—ak]| Nar+1—ax([[[d—ax]|

4OSpeciﬁcally, in the statement of Mielczarek’s result, @ is our allocation space A, A is our
extended menu M, A,, U A, corresponds to the flexible menu items in ext M = menu(z), A,
corresponds to the semi-flexible menu items, and
e condition 1° is the first condition in Theorem 8§;
e if ext M Next A # (), then conditions 2° and (i) are equivalent to the absence of a flexible
chain/loop;
o if ext M Next A = ), then conditions 2° and (ii) are equivalent to the absence of a
flexible loop.
Condition (iii) in Mielczarek’s theorem never applies if A (Q in the statement) is a polytope.
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a common recession cone, is straightforward (see an earlier version of this paper
(arXiv:2412.00649v1)).

The key idea behind the proof is that any two mechanisms that decompose
a given (finite-menu) mechanism = € X must make at least the same incentive
and feasibility constraints binding as x. Geometrically, for the extended menus
M’ and M"” corresponding to 2’ and z”, this means that the orientations of their
edges must also be edge orientations of the extended menu M corresponding to x.
Extended menus with the same edge orientations as M exist if and only if menu(x)

has no flexible chain or loop. Figure 2 illustrates.

Proof of Theorem 1. Let M € ext M be the extended menu associated with a
mechanism x € ext X'. Recall that menu(z) = ext M by Lemma 3 (ext M is closed
since d = 2); thus, we show |ext M| < |F]|.

If cone © # R?, then some vertex in ext M is inflexible for otherwise M € ext M
has a flexible chain. If cone ©® = R? and no vertex in ext M is inflexible, then M
can only not have a flexible chain or loop if every vertex in ext M is semi-flexible.
In this case, |ext M| < |F|. Thus, we assume that ext M contains an inflexible
vertex.

Consider any two inflexible vertices a,a’ € ext M such that the chain S =
(ay,...,a,) in between a and o’ in the adjacency relation consists of flexible and
semi-flexible allocations (a = a’ if there is only one inflexible vertex in ext M).
Without loss, assume (a, ay, ..., a,,a’) are ordered clockwise. Let (Hy, ..., Hy) C F
be the sequence of feasibility constraints traversed when moving from a to o
clockwise along the boundary of A.

We show that n < k — 1. Since M € ext M, S does not contain a flexible chain.
Thus, S contains either (1) at most one flexible vertex or (2) two adjacent flexible
vertices a; and a;1; such that @;a;77 C H; for some j = 2,...,k — 1. In the first
case, since a € H; and o' € Hy, there are at most & — 2 semi-flexible vertices in
S; hence n < k — 1. In the second case, since a € Hy, a’ € Hy, and a;,a,41 € Hj,
there are at most k — 3 semi-flexible vertices in S; hence n < k — 1.

In total, we then have |ext M| < |F|. The necessity of exhaustiveness follows

from Lemma 1. O

A.2.2. Extreme Points for Multi-Dimensional Type Spaces.

Proof of Theorem 2. The necessity of exhaustiveness follows from Lemma 1. Dense-
ness in the exhaustive mechanisms follows from Corollary 2 below. Since X is a
compact and convex subset of a normed vector space (Lemmas 3 and 13), the set
of extreme points is a G5 (Aliprantis and Border (2007, Lemma 7.63)). g

Proof of Theorem 3. Immediate from Lemmas 4 and 6. U
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Proof of Corollary 1. Let + € X be exhaustive with associated extended menu
M € M such that menu(z) = ext M is finite and non-separating. Note that
general position is preserved under small perturbations of the points in ext M.
Openness then follows since two extended menus with the same number of extreme
points are close in the Hausdorff distance if and only if the extreme points can be
matched bijectively with pairwise small Euclidean distance (cf. Lemma 13).

We also use that non-separation is preserved under small perturbations of the
points in ext M. For a given extreme point a € ext M of the polyhedron M € M,
the normal cone

Nuf(a) := {0 € cone® : a € argmaxa -6} (2)
acext M
is closed. For every € > 0, sufficiently small perturbations of the menu items in
ext M produce a polyhedron M € M with corresponding extreme point a’ € ext M
such that Ny (a’) N © lies entirely within the e-neighborhood of Njs(a) N ©. Thus,
if ©\ Nys(a) is connected, then ©\ Ny (a’) is connected whenever the perturbations
are sufficiently small.

We prove denseness by constructing extended menus M € ext M that are
arbitrarily close to M in the Hausdorff distance and satisfy | ext M| = | ext M].

For this, we perturb ext M into general position while preserving exhaustiveness;
call the resulting set W. More explicitly, if ext M is a singleton, then M € ext M.
If |ext M| > 2, select an inclusion-wise minimal subset V' C ext M such that
the hyperplanes in F that contain a point of V' satisfy conditions (1) and (2) in
Lemma 2 (this necessitates 2 < |V| < d+1). For each a € V, if a € aff(V \ {a}),
move a outside aff(V \ {a}) while keeping a on the hyperplanes in F intersected
by a, that is, in the face F' = (\{H € F | a € H} N A. To see that this is possible,
note that if a intersects 1 < k < d hyperplanes in F, then dim F' > (d — k) whereas
dimaff(V \ {a}) < (d — k) by the minimality of V. Also by the minimality of
V, F & aff(V \ {a}), hence the desired perturbation is possible. By construction,
the resulting perturbed set V' is in general position. Now iteratively perturb the
remaining points in ext M \ V until the resulting set W is in general position.
Obviously |W| = | ext M]|.

Define M = conv W + ©°. By construction, M is a polyhedron in M that is
arbitrarily close to M. For all sufficiently small perturbations, W is in convex
position, that is, no point of W lies in the convex hull of the others, because ext M
was in convex position. In addition, for all a,a’ € W, we have a ¢ o’ + ©° since
the same holds for all a,a’ € ext M and since ©° is closed. Thus, ext M = .
Moreover, M is exhaustive by the construction of V. Since ext M is also in general

position and non-separating, M € ext M by Theorem 3. U
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Proof of Corollary 2. Fix an exhaustive extended menu M € M and € > 0. Choose
a finite set V' C ext M such that the facet-defining hyperplanes in F that contain a
point in V" are exactly the hyperplanes in F (M) and such that, for every a € ext M,
there exists v € V with ||a —v|| <e. Let My :=convV + 0° € M. By Lemma 2,
My is exhaustive. By Lemma 13, d(My, M) < e. By construction, |ext M| < oo.

We iteratively perturb My to eliminate all separating vertices (ay,...,a,), i.e.,
those vertices of My for which cone © \ Ny, (a;) is disconnected (cf. (2)).
Suppose M,;_; € M is exhaustive, has separating vertices (a;,...,a,), and is

arbitrarily close to Mj.
We construct an exhaustive M; € M with separating vertices (a;i1,...,a,)

arbitrarily close to M;_ ;. Pick a hyperplane

H;:={0 € cone®: n;-0 =0}
with H; Nint Ny, , (a;) # 0 such that both subcones

CF = Ny, (a;) N {%n,; - 0 > 0}

have connected complements in cone ©. If for small € > 0 we have a; + en; € A,
set a; = a; and a] := a; + en;. Otherwise, if a; — en; € A, set af := a; and
a; = a; —en;. If a; £en; ¢ A, then the line L(a;) = {a; + an; : a € R} intersects

M;_1 only in the point a;. For a € A, define the smallest face of A containing a:

F(a):=AN ﬂ H, where F(a):={H €€ F:a-nyg=-cpy}.
HeF(a)

Choose a; € int A with ||a; — a}|| < e such that dim F'(a; ) = dim F'(a;) + 1 or

dim F(a;) = dim F'(a;) + 1, where a; and a; are the endpoints of the line segment

L(a}) N A. Let

M; := conv ((ext M; 4\ {a;}) U{a;,a; ) + O°.

[

By construction, d(M;, M;—1) = O(e). Up to a set of types of measure O(e), types
in C; select a;, types in C; select a; , and all other types make the same choices
as from M;_;. Hence cone® \ Ny (af) is connected by the choice of H;. By
construction,
span{n sy = DA} e riat i
By Lemma 2, M; is exhaustive. Thus, M; has all the desired properties.
Finally, by Corollary 1, M, is arbitrarily close to an element of ext M with finite

menu size, which completes the proof. Il

Proof of Theorem 4. We begin with a few definitions. For M C M, let exh M

denote the set of exhaustive extended menus in M. Let B C exh M denote the
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set of exhaustive extended menus that have a bounded face f with diam(f) > 1
and outer unit normal vector ny € © such that d(ns, bndr cone ©) > 1/k (which is
satisfied by convention if bndr cone ® = (), that is, cone © = R?).4!

We define exh M*¢ := exh M \ |, B and note that the mechanism =z € X
associated with an extended menu M € exh M* is continuous on int cone © (in
particular, menu(z) is uncountable whenever it is not a singleton). This is because,
for each M € exh M*® and 6 € intcone®, argmax,,,;0 - a is a singleton for
otherwise the boundary of M would contain a line segment connecting two extreme
points of M. In particular, 2() is uniquely determined by M on int cone © in the
payoff-equivalence class. Therefore, the associated indirect utility function U € U
is differentiable on int cone ©. A differentiable convex function on an open domain
is continuously differentiable on that domain (Rockafellar (1997, Corollary 25.5.1)).
Hence, U is continuously differentiable on int cone © and therefore x = VU is
continuous on int cone ©.

Using the previous observation, we complete the proof by showing that ext M N
exh M*¢is a dense G4 in exh M. M is a compact metric space (Lemma 13), hence a
Baire space. The same holds for the closed, hence compact subset exh M C M. By
the Baire category theorem and since ext M is a dense G in exh M (Theorem 2),
it remains to show that exh M?*¢ is a dense G in exh M.

By definition, exh M*¢ is a Gy if each By is closed. Consider any convergent
sequence {M;};en C By with limit M € exh M. We show M € B;. By definition,
for each 7 € N, there exists a line segment L; C bndr M; of length > % with
normal vector n; € cone® N'S~! such that d(n;, bndr cone ©) > % By selecting
a subsequence if necessary, we may assume that the line segments {L;};eny and
the normal vectors {n;};eny converge to limits L* C A and n* € cone©® N Se-1
respectively, because cone © N'S¥! and A are compact. It is routine to verify
that L* C bndr M, L* has length > %, n* is normal to L* on bndr M, and
d(n*,bndrcone ©) > £. Thus, M € By.

To show denseness of exh M*¢, consider the set exh M \ By, for some arbitrary
k € N. By the previous paragraph, exh M \ By is relatively open in exh M.
Moreover, exh M\ By, is dense in exh M because every extended menu M € exh M
can be approximated by an extended menu in exh M whose bounded faces have
diameter < 1. We have that exh M** = (2, (exh M \ By) is a countable
intersection of relatively open and dense sets in a Baire space. Thus, by the Baire

category theorem, exh M*¢ is dense in exh M. O

41The diameter of a set S C R%, denoted diam(S), is defined as diam(S) = sup{|la—b|| : a,b € S}.
42For example, one can mollify the support function of M while preserving exhaustiveness; see
Schneider (2014, Theorem 3.4.1).
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A.3. Proofs for Section 6. Finally, we prove the results about rationalizability for
the applications to monopoly pricing, delegation and veto bargaining in Section 6
(Theorems 5 to 7).

A.3.1. Monopoly.

Lemma 10. In the monopoly problem, every IC and IR mechanism that excludes
the lowest type and has no marginal distortions at the top in each dimension is

undominated.

Proof. Suppose x satisfies the hypotheses but 2’ dominates x.
We first show that U’ > U. Extend U and U’ to cone © by 1-homogeneity. By
dominance,

ViU (0) > Vi;U(f) for a.e. 6 € cone®,

where v = (0,...,0,1). For a given 6 € cone® and ¢t € R_, define z(t) = 6 + tv
and h(t) = U'(z(t)) —U(z(t)). Note that h is the difference of two convex functions
restricted to the ray z(R_) C cone©, hence absolutely continuous on compact
intervals and differentiable almost everywhere. By Fubini’s theorem, for a.e.
0 € cone®, V,U'(2(t)) > VU (2(t)) holds for a.e. t € R_. For such ¢, h(t) > 0 by
the chain rule, so h is non-decreasing. If lim;—, o, U(2(t)) > 0, then = would have
to allocate some goods with positive probability without charging any payment,
which would contradict that = excludes the lowest type. Hence, lim;, ., h(t) > 0.
Thus, h > 0. Since this holds for a.e. § € cone © and indirect utility functions are
continuous, U’ > U, as desired.

Since x has no distortion at the top 6* = (1,...,1, —1), we must have U'(6*) =
U(0*). Otherwise, if U'(6*) > U(0*), then revenue at z/(6*) is lower than revenue
at x(0*) (since z(#*) maximizes surplus). The same would hold in an open
neighborhood of 8* by IC since our no-distortion condition requires that 6* uniquely
prefers to buy the grand bundle of all goods, contradicting dominance.

We next construct an auxiliary objective ¥ : cone® — R For each i =
1,....m=d—1, let

5:(60) = 0 if 10;/04] <1 —¢; and G(0) = 1,
—1+¢ if]6;/04 > 1—¢;
where a small perturbation vector ¢ € R, will be needed to rigorously address
non-differentiabilities. The objective v differs from revenue-maximization only if 0
is willing to pay (nearly) the maximum amount for good i = 1,...,d — 1, in which
case a cost of (nearly) 1 is incurred when good i is sold to . Crucially, since x
has no marginal distortions at the top in each dimension (meaning type 6 € ©

with 6; = 1 strictly prefers allocations where good ¢ = 1,...,m is allocated with
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probability 1), we have
2'(0) - 0(0) = x(0) - 9(0) — d(¢)

for a.e. 0 € ©, where d(¢) — 0 as ||¢]|oc — 0 by IC and the compactness of O.
Using a.e. differentiability and 1-homogeneity, for a.e. € cone ©,

Vi) U'(0) > Vo) U(6) — 6(e). (3)
Since U’ # U and U’ > U, there exists §° € © such that U’(6°) > U(6°). For

the sake of clarity, we complete the proof with a slightly informal argument; the
footnote below fills in the gaps. The integral curve of (a smoothed version) of
the vector field # — ©(6) with initial condition 6" connects 6° to A\@* for some
AER, ase — 0. By (3), U'(A0*) —U' (M) +O(5(e)) > U'(0°) — U(6°) >0, a
contradiction with U’(6*) = U(6*) by the 1-homogeneity of indirect utilities.*> [J

Proof of Lemma 9 (Monopoly Problem). Suppose not, that is, V(6) = z(0) - v =
2'(6)-v for undominated IC and IR mechanisms = and 2’. With the same arguments
as in Lemma 10, we get h = 0. Since z and 2’ necessarily exclude the lowest type
(otherwise they allocate goods for free), lim; o, h(t) = 0. Thus, h =0 and U = U".

We conclude z = 2'. O

Remark 2. A mechanism that excludes the lowest type and has no distortion at
the top in the usual sense can be dominated.** Meanwhile, the mechanism depicted
in Figure 2 of Manelli and Vincent (2007) is undominated, yet has distortion at the
top in one dimension. We leave a complete characterization of dominance in the
multi-good monopoly problem for future work; the converse to Lemma 10 holds in

the one-good case.

Proof of Theorem 5. The first claim about weak rationalizability is immediate from
Lemmas 7 and 10. For the denseness claim, take any M € M associated with an
IC and IR mechanism z € X. Define the pricing function p : [0,1]" — R, (cf.

43Let us be explicit. Without loss, assume 1 > 69 > ... > 9 > 0. For each k = 1,...,m, define
1 761)00 (1 752)00 (1 *816_1)00 9o
ok — ( k ko kogogo g0 __ Yk o.
( 1_519 ’ 1_5/’@ 3 ) 1_5/’@ s Vky V41> sUms 1_€k € cone

By Fubini, for a.e. §° and £ € R, Vi) U'(8) > VieyU(0) — 6(¢) holds for a.e. 6 along the
polygonal chain (6°,...,6™). By integrating along each segment of the chain for such % and
g, we have U’ (™) — U(0™) + O(6(¢)) > U'(6°) — U(#") > 0 by the same arguments as in the
first paragraph and the definition of . Hence, by the continuity of U and U’, as ||¢||cc — 0, we
conclude 69, (U'(8%) — U(6*)) > U'(6°) — U(6°) > 0 since 5-6™ — 6*, a contradiction.

4“For example, the IC and IR mechanism that sells type W(Lﬁl, 02, —1) good 1 with probability
%91 + i@g and good 2 with probability if)l + %92 is dominated by the IR mechanism that sells
the additional probabilities Ve(6? + 62)(0; — 62)2. This mechanism is IC for all sufficiently small
¢ > 0. (Payments are uniquely pinned down by revenue-equivalence and IR.)
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Hart and Reny (2015, Appendix A.2)) via
p(b) = min{t € Ry | (b,t) € M}.

Since M is closed and convex, p is well-defined and convex and p(0) = 0 by IR. The
form of the polar cone ©° for the monopoly problem implies V..p(b) € [0, 1] for the
directional derivative in unit direction e; for all b € [0,1)™ and i = 1,...,m. For
all sufficiently small £ > 0, define the pricing function p*(b) = (1 — 2¢)p(b) +1-b
for all b € [0,1]™ and M¢ = epip® + ©°. Then, p° is also convex, p°(0) = 0, and
Ve, p°(b) = (1 —2e)V,p(b) +¢ € [e,1 —¢]. As e — 0, the Hausdorff distance
d(epip,epip®) — 0. By Lemma 13, d(M*, M) — 0. The IC and IR mechanisms z*
associated with the extended menus M*® must exclude the lowest type and have
no marginal distortion at the top in each dimension because the marginal prices
V., p°(b) are bounded away from 0 and 1, so the lowest type prefers to buy nothing
whereas any type with §; = 1 prefers to buy the maximum amount of good i.

We observe that the undominated extreme points are dense in the set of (IC)
and (IR) mechanisms when m > 2. As in the previous paragraph, for any extended
menu M € M corresponding to some (IC) and (IR) mechanism, take an extended
menu M€ with d(M, M¢) < e and corresponding marginal prices in [e, 1 — ], which
is hence undominated. In particular, (0,...,0,0),(1,...,1,p) € ext M* for some
price p > 0 for the grand bundle, hence M* is exhaustive by Lemma 2. As in
the proofs for Corollaries 1 and 2, apply an arbitrarily small perturbation to M¢
to obtain an extended menu M* € ext M with (0,...,0,0),(1,...,1,p) € ext M*.
As long as all perturbations are sufficiently small and carried out in the price
dimension, the marginal prices of M* are still bounded away from 0 and 1, hence
M* is undominated.

We complete the proof by showing that the strongly rationalizable mechanisms
are dense in the undominated extreme points. Fix any undominated extreme point
r €extX. Let V € ext)V be the associated principal’s indirect utility function.
Lemma 8 shows that there is a sequence (V"),en C exp, V such that V" — V.
By Lemma 9, for each n € N there is a unique IC and IR mechanism z" € X
that generates V"; hence each 2™ is strongly rationalizable (with a strictly positive
belief density). Since X is compact, up to taking a subsequence, x,, — ' € X in
L'. By continuity of the map X — V, 2/ must generate V. Again by Lemma 9,

x = 2/, as desired. O

A.3.2. Delegation.

Lemma 11. In the delegation problem, an IC mechanism x is undominated if and

only if 0 € menu(z).
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Proof. 1f not, give the agent discretion to choose 0 in addition to menu(z). Since
b € R, ,, whenever the agent prefers 0 over menu(x), so does the principal. Since
0 € ext A, a positive measure of types prefers 0 to menu(x); hence the mechanism
with menu {0} U menu(z) dominates x.

Let z, 2’ € X with indirect utilities U, U’ € U and assume 0 € menu(z). Suppose

for contradiction that 2’ dominates x, that is,
(0 —b)- (z'(0) —x(0)) > 0 forae €S,

with strict inequality on a set of positive measure. By the same argument as in the
first paragraph, 0 € menu(z’). Since z € QU and x’ € OU’ and using 1-homogeneity

of indirect utilities,

"0)—-U(0
o) — Ut6) )||0||U( ) > V,(U'(9) = U(0)) for a.e. # € R% (4)
Fix a generic § € S¥1 and consider the ray z(t) := 6 + tb with t € R and its
norm 7(t) := ||z(¢)|| (which is bounded away from 0 for 6 not collinear with b).
Define

h(t) == U'(2(t)) — U(2(t)).

Note that h is the difference of two convex functions restricted to a line, hence
absolutely continuous on compact sets and differentiable almost everywhere. For
a.e. § € ST1 (4) holds a.e. along the ray z(¢) (Fubini) and, by the chain rule,

. h(t
h(t) < h(t) for a.e. t € R. (5)
r(t)
Because 0 € menu(z) N menu(z’),
U'(2(t)) =0 forall t <T. Let

way:wpclggg)hw,

W(t) = exp (— /;%) (h(t) — %) < 0 forae. t.

Hence W(t) is nonincreasing. By construction, W(7") = 0. Thus, ¥ < 0 and h < 0,

so h is also nonincreasing by (5). Since § € S was generic and U and U’ are

there exists 7' € R such that U(z(t)) =

so that

continuous, we have U’ < U.
As an intermediate step, we note lim;_,, %

& = 0 whenever [[b|| < 1. Since

U’ < U and 2/ dominates x, we have

o' (0%) - (0* —b)  U'(6%)
PSRy e oy e -

Y
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so U'(0*) = U(6*). Continuity and 1-homogeneity of U and U’ imply
h(t b
tim M _ i — 0y (2 )
t—oo (t)  t—oo |10 + tb]|

To conclude, we show h = 0. Since h < 0 and h is non-increasing, if h # 0,

then h(t) < 0 for all sufficiently large t. Note that r7(t) = (Heﬁtfflzllb — ||b]] € (0,1) as

t — o0o. Thus, for all sufficiently large t,

d (h) (t):hr—hf< by —hi (1—7)h

Rl = < 0.
dt \'r 72 - 72 72

Since h/r < 0, we contradict lim;_, % = 0. Thus, h = 0. Since § € S ! was

generic and U and U’ are continuous, we have U’ = U, so 2’ = x, a contradiction.

g

Proof of Lemma 9 (Delegation Problem). Suppose not, that is, V(6) = x(0)-v(0) =
2'(0) - v(f) for undominated IC mechanisms z and 2’. Then, in the proof of
Lemma 11, (4) and (5) hold with equality. Hence ¥ = 0 implies h = 0 implies
U =U'. We conclude = = z'. O

The proof for Theorem 6 is analogous to the proof of Theorem 5 and hence

omitted.
A.3.3. Veto Bargaining.

Lemma 12. In the veto bargaining problem, an IC and IR mechanism x 1is

undominated if and only if a,a* € menu(z).

Proof. We first show that the conditions given in the statement are necessary. For
this, fix any IC and IR mechanism z. It is clear that a € menu(z) for otherwise
x is not IR since there is a type € for which ¢ is their (unique) most preferred
alternative in A. If menu(z) does not contain the principal’s favorite alternative
a* € ext A, obtain a new IC and IR mechanism z’ by letting the agent choose
from menu(x) U {a*}. Thus, for all § € ©, either 2'(0) = x(#) or 2/(f) = a*. Since
a* € ext A, there is a positive measure of types for which a* is their most preferred
allocation in A. Thus, 2/ dominates x.

For sufficiency, suppose z is an IC and IR mechanism such that a, a* € menu(x).
For the sake of contradiction, suppose the IC and IR mechanism 2’ dominates x.
By the same argument as in the previous paragraph, a,a* € menu(z’). Let U and
U’ be the agent’s indirect utility functions associated with x and z’, respectively.

We complete the proof. Since x € OU and 2’ € U’ and using 1-homogeneity of
indirect utilities and dominance,

Vo (U'(0) = U(8)) >0 for a.e. € R%. (6)
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Fix a generic § € S%! and consider the ray z(t) := 6 + tb with ¢ € R. Define

h(t) = U'(2(t)) — U(2(t)).

Note that h is the difference of two convex functions restricted to a line, hence
absolutely continuous on compact sets and differentiable almost everywhere. For
a.e. § € ST (6) holds a.e. along the ray 2(t) (Fubini) and, by the chain rule,
h(t) >0 for a.e. t € R. Because a,a* € menu(x) N menu(z’), there exists T € R,
such that U(z(t)) = U'(2(t)) =0 for all t < =T and U(z(t)) = U'(2(t)) = a* - 2(t)
for all t > T. Hence, h(t) = 0 for all t < —T and ¢t > T Since h(t) >0, h = 0.
Since § € S* ! was generic and U and U’ are continuous, we have U’ = U, so

' = x, a contradiction. O

Proof of Lemma 9 (Veto Bargaining Problem). Immediate from the proof of
Lemma 12. U

The proof for Theorem 7 is analogous to the proof of Theorem 5 and hence
omitted.

A.4. Proofs for Section 7.
A.4.1. Mechanism-Menu-Utility Equivalence. We need the following lemma.

Lemma 13. M equipped with the Hausdorff distance d is a compact metric space
and d(M, M") < d(conv ext M, convext M").

Proof of Lemma 13. We have
dM,M")=inf{e¢>0: M C M'+eBand M' C M +eB}
convext M + ©° C convext M +©O° 4+ B and
=inf<e>0:
convext M' 4+ ©0° C convext M +O° 4+ ¢B

convext M C convext M’ + B and
<inf<e>0:

convext M' C convext M +eB

= d(conv ext M, convext M') < oo,

where the first inequality is because Z; C Zy implies 2, + Z3 C Zy + Z3 for
Zy, Zy, Z3 C RY, and the second inequality is because A is compact.

We conclude that (M, d) is a metric space since extended menus are closed, since
the Hausdorff distance is an extended metric on the space of all closed subsets of
R?, and since the distance is finite by the first paragraph.

It remains to show that (M, d) is compact. Consider any sequence { M, }nen C
M. By Blaschke’s selection theorem, {clconvext M, },cn has a convergent subse-

quence {cl conv ext M, }ren with compact convex limit K C A. Let M = K4+0° €
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M. By the first paragraph, the subsequence {M,, }ren convergences to M € M.
Thus, M is compact. O

Proof of Lemma 3. We first show that &, ®,, and ®3 are well defined and bijective.

The map ®; : X — M is well-defined. To see this, let M = convmenu(z) + ©°.
We have ext M = ext(convmenu(z) + ©°) C ext(conv menu(z)) C A since ©° is a
cone. M is closed and convex because it is a sum of a compact convex set and a
closed convex set.

The map ¢, : M — U is also well-defined. To see this, observe that the support
function U : 2+ sup, ¢y - 2 of M € M is an indirect utility function in ¢/. This
is because sup,¢), ¥ - 2 < oo if and only if z € cone © since recc M = ©°. In this
case, arg MaX, . s @ - 0 C A is non-empty for all € © and every selection from
the argmax defines an IC mechanism with indirect utility function U.

We next show that the composition ®, 0 ®; assigns to each IC mechanism x € X
its indirect utility function U € Y. This is because

Ul)= max a-0= max y-0=((Py0Py)(x))(0).

a€menu(x) yEconv menu(z)+0O°

To see the first equality, note that by the definition of the essential range, x(f) €
arg MaX, e penu(z) @ 0 for a.e. 6 € ©. Thus, U(#) = maXsemenu(z) @ - 0 for a.e. 6 € ©.
Since U is continuous and the essential range menu(z) is closed (support of a
measure on A), the equality holds for every 6 € ©.

We observe that the composition ®5 o & is bijective. It is injective by the
definition of payoff-equivalence and surjective since U is defined as the set of all
indirect utility functions associated with the mechanisms in X.

We can now conclude that ®; : X — M and ®5 : M — U are bijective because
®, 0 @, is bijective and P, is injective. The latter holds since support functions
U defined on RY, where we set U(z) = oo for z ¢ cone®, uniquely determine
their associated closed convex sets (Hiriart-Urruty and Lemaréchal (1996, Theorem
V.2.2.2)).

It remains to verify that the inverse of &30 ®; : X — U is given by &3 : U — X.
Take any mechanism z € X with M = ®1(z) € M and U € ®5(M) € U. We have
x(0) € argmax,,, a- 6 since the indirect utility function U is the support function
of M. 0U(#) = argmax,,,;a -0 is a standard property of support functions
(Hiriart-Urruty and Lemaréchal (1996, VI, Equation (3.1))).

We next show that &, ®,, and ®3 are affine. That &5 : M — U commutes with
convex combinations is standard property of support functions (Hiriart-Urruty and
Lemaréchal (1996, Theorem V.3.3.3)). That ®3: U — X commutes with convex

combinations follows immediately from the linearity of the gradient map, which is
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defined almost everywhere. Thus, ®; : X — M must also commute with convex
combinations.

A sequence of closed convex sets converges in the Hausdorff distance if and only
if the associated support functions converge with respect to the sup norm on any
compact set (Salinetti and Wets (1979, Theorem 6)). Thus, since the Hausdorff
distance between any two extended menus in M is finite (Lemma 13), @, is a
homeomorphism. Since M is compact, U is also compact.

We next show that &3 is continuous. Consider any convergent sequence
{Upn}neny C U with limit U € U. Let D,, C cone® be the set of points where
U, is differentiable, and let D C cone© be the set of points where U is differ-
entiable (extend indirect utility functions to cone © using 1-homogeneity). Let
D* = DN (),ey Dn- Indirect utility functions are convex and therefore almost
everywhere differentiable. Moreover, the countable union of nullsets is null; thus
cone © \ D* is null. We have VU, (0) — VU(#) for all § € D* (Hiriart-Urruty
and Lemaréchal (1996, Theorem VI.6.2.7)). Thus, z, = ®3(U,) — ®3(U) = x
pointwise almost everywhere. Since support functions are sublinear, the Dominated
Convergence theorem implies convergence in L*.

Finally, a continuous bijection ®3 : i/ — X from a compact space to a Hausdorff
space is a homeomorphism; consequently, ®; = (®3 0 ®3)~! is a homeomorphism.

It remains to show that for an IC mechanism x € X with associated extended
menu M = ®(z) € M and associated indirect utility function U = ®o(M) € U,

menu(z) = c{VU(0) : U is differentiable at 6} = clext M.

For the first equality, let D = {# € © : U is differentiable at 6}. Suppose
a ¢ clVU(D). Then, VU'(A) = () for any sufficiently small open neighborhood
A of a. Since z = VU almost everywhere, 27 (A) is a nullset. Hence, a ¢ menu(z).
Conversely, suppose a € cl VU(D). Let A be any open neighborhood of a. Then
there exists #* € D with VU (#*) € A. Choose an open set B such that VU (#*) €
B C A. Since dU is upper hemi-continuous (Hiriart-Urruty and Lemaréchal (1996,
Theorem VI.6.2.4)) and oU (6*) = {VU(6*)}, there exists an open neighborhood
© of #* such that dU(A) C B for all # € ©. In particular, for almost every 6 € ©,
VU(A) € B ¢ A. Hence z7'(A) has positive measure. Since A was arbitrary,
a € menu(z).

For the second equality, OU(0) = {a*}, that is, U is differentiable at 0, if and
only if max,eys @ - € has the unique solution a* (Hiriart-Urruty and Lemaréchal
(1996, VI, Equation (3.1))). Thus, a* is an exposed point of M. Conversely, any

exposed point a* of M is the unique maximizer of max,cys a - 6 for some 6 € ©.
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Hence, {VU(#) : U is differentiable at 6} = exp M. Straszewicz’s theorem shows
that ext M C clexp M for a closed convex set M. O

A.4.2. Indecomposability.

Proof of Lemma 4. We show the converse assuming that A is the unit simplex and
© is unrestricted. In this case, extended menus are exactly the convex bodies
(non-empty compact convex sets) contained in the allocation space. By Lemma 1,
if M is not exhaustive, then M ¢ ext M. Thus, it remains to show that if M is
decomposable, then M ¢ ext M.

For any convex body K C RY, let

d d d
d
Zzigglea% a,}ﬂﬂ{zER

i=1 =1 =1

Z; > mina;
aceK

Amﬁz{zeRd

denote the smallest simplex that contains K and is homothetic to the allocation
simplex A. A(:) commutes with Minkowski addition because the function K
max,cx 2 - # commutes with Minkowski addition for any # € R? and because
the non-empty intersection of parallel translates of facet-defining halfspaces of a
simplex is homothetic to that simplex.

Suppose the extended menu M € M is decomposable; that is, there exist convex
bodies K’, K" C R not homothetic to M such that M = K’'+ K”. By the previous
paragraph,

A(M)=A(K')+ A(K") C A. (7)
By definition of A(-), there exist s, € R? and A, p > 0 such that
A(K') —s A(K") —t
e R 8

Solving (8) for A(K') and A(K"), respectively, and plugging into (7) yields s+t = 0
and p+ A =1. Now,

K — K"
M=K +K' =\ 8+0—M1;T.
=M’ =M

M',M" € M are convex bodies in A not homothetic to M because A(M') =
A(M") = A(M) € A. O

Proof of Lemma 5. For the unrestricted type space, that is, cone © = R?, extended
menus are convex bodies. Meyer (1972) and Silverman (1973) show that the
indecomposable convex bodies in the plane are exactly points, line segments,
and triangles; hence |ext M| < 3. For a restricted type space, the same bound
|ext M| < 3 holds trivially because a mechanism/extended menu that is not an

extreme point on the unrestricted type space is not an extreme point on any
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restricted type space either. Suppose, then, the type space is restricted. Since
|ext M| < 3, ext M is in general position. Moreover, ext M is non-separating if

and only if |ext M| < 2. Lemma 6 completes the proof. O

Proof of Lemma 6. Suppose M € M and ext M with |ext M| < oo is separating
the type space. Pick a € ext M so that {6 € cone© : a ¢ argmax; @ -0} is
disconnected with components {# € cone® : argmaxzcq a@-0N(A2U{a}) =0}
and {f € cone © : arg max; .y @-0N(A'U{a}) = 0}, where Al UA?U{a} = ext M.
For € > 0 sufficiently small, set

Al ={a+(1+e)(b—a): bec A’} and M. :=conv(ALUA*U{a})+0° € K.

Define T4 : ext M — ext My by Ti(a) = a, TL(b) = a+ (1 £ &)(b—a) for b € A,
and Ty(c) = c for ¢ € A%

We claim that, for every 6 € ©, the maximizers in M, are the image under T’
of the maximizers in M, that is,

argmaxy - 0 = Ti(argmaxy . 9).
yEext M4+ yeext M

This is because: (i) within A, arg max, 41 (a+(1+e)(b—a)) -6 = arg max,c 41 (b—
a)-0; (ii) points in A2U{a} are fixed under T; (iii) for any b € A', (a+ (14¢)(b—
a))-0—a-0 = (1+e)(b—a)-6, so the sign of b-0 —a-0 is preserved; (iv) by the choice
of a, there are no A'-A? ties. Using the isomorphism between extended menus and
mechanisms/choice functions (Lemma 3), we conclude M = %M+ + %M_. Since
My are not homothetic to M, M is not indecomposable.

For the converse, suppose M € M and ext M with |ext M| < oo is in general
position and non-separating. If cone © = R?, then M is a polytope and, by general
position of ext M, it is a simplicial polytope. We can therefore apply Shephard
(1963, Theorem 13) to conclude that M is indecomposable. Thus, henceforth
suppose cone © # R? which implies 0 ¢ int cone ©.

Say that a,b € ext M are adjacent if {a,b} = argmax; . a - 6 for some
6 € int cone ©; equivalently, if the normal cones Nys(a) and Ny (b) intersect in a
common (d — 1)-dimensional face, where we remind the reader that Ny(a) = {6 €
cone© : a € argmax;eoy G- 0}

We observe that int cone® \ Njys(a) is path-connected. Since ext M is non-
separating, cone © \ Ny/(a) is connected; in fact, path-connected because both
sets are closed and convex. Any path connecting 6,6 € int cone © through cone ©
admits a uniform neighborhood that does not intersect Ny;(a) because a path is
compact and Nys(a) is closed. Hence, int cone © \ Nys(a) is path-connected.

We next show that bndr Ny (a) Nint cone © is path-connected. Fix any arbitrary

0* € int Nys(a), which is non-empty because normal cones to extreme points are
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full-dimensional. Define the gauge
d(0) =inf{\>0: (0 —0") € A\(Np(a) —0)}.

Since the gauge of the closed convex set (Ny/(a) — 6*) is continuous (e.g., Hiriart-
Urruty and Lemaréchal (1996, Theorem V.1.2.5)), the map int cone © \ Ny/(a) —
bndr Nys(a) N int cone © given by 6 — 6* + % is continuous. It has values
in bndr Nys(a) by construction and in int cone ©® because int cone © is convex.
Fix any 6,60’ € bndr Ny(a) Nintcone®. Let ¢ > 0 be so small that 6 + (1 +
e)(0 —60%),0 + (1 +¢e)(0 — 6*) € int coneO. By the previous paragraph, find a
path v : [0,1] — intcone® \ Nj/(a) such that v(0) = 0 4+ (1 + £)(6 — 0*) and
v(1) = 0 + (1 4+ £)(¢ — 0*). Then the image of v under the continuous map
0— 0"+ % is a path in bndr Ny, (a) Nint cone © from 6 to ¢'.

We further observe that any two points in bndr Ny (a) N int cone© can be
connected by a path that does not traverse any face of Ny (a) of dimension d — 3
or lower (except at the endpoints) because bndr Ny (a) N int cone O is relatively
open in bndr Ny (a).

Let 7 denote the set of bounded 2-dimensional faces of M, that is, triangular
faces of M since ext M is in general position. We say that 7' C T is strongly
connected if for any two triangles A, A,, € 7' there exists a sequence of triangles
(AL A% . A" A™) each in T, such that consecutive triangles share a common
edge.

We next claim that if ext |M| > 3, then every a € ext M has an adjacent vertex
b € ext M such that T (a) N7 (b) # 0. This is because a has a least two neighbors,
for otherwise the removal of Ny, (b) disconnects cone ©, so the path connecting
the corresponding (n — 1)-dimensional faces of Nys(a) can be chosen to traverse
a common (n — 2)-dimensional face of a and b, which corresponds to a triangle
containing both a and b.

Let 7(a) € T denote the subset of triangles containing the vertex a € ext M;
we show that 7 (a) is strongly connected. Triangles containing a correspond to
(d — 2)-dimensional faces of Nys(a) contained in int cone ©, and two triangles share
an edge containing a if the corresponding (d — 2)-dimensional faces of Ny;(a) are
contained in a common (d — 1)-dimensional face of Njs(a). Consider any path
joining two (d — 2)-dimensional faces in bndr Ny (a) N int cone © that traverses no
faces of dimension (d — 3) or less. The (d — 2)-dimensional faces traversed along
this path correspond to the desired sequence of triangles.

Suppose T # (. By the previous two paragraphs, 7 (a) is non-empty for all
a € ext M and T is strongly connected. Smilansky (1987, Theorem 5.1) implies
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that M is indecomposable.”” Lastly suppose T = ). Then necessarily |ext M| < 2,

in which case M is indecomposable. O

A.4.3. Dominance and Rationalizability: Preliminaries. We prove Lemma 8 and
obtain Lemma 7 as a corollary along the way.

We define the following subsets of V: und)V C V is the set of undominated
principal utility functions; undV C undV is the set of undominated principal utility
functions that are strictly suboptimal for every probability density f € L*>°(O)
that is uniformly bounded away from 0; exp, V C V is the set of principal utility
functions that are uniquely optimal for some probability density f € L>(©) that
is uniformly bounded away from 0. Note exp, V C undV NextV. We write
(V. f) = o V(0)£(0) do.

We prove Lemma 8 in three steps. The argument for the first step is inspired by
(but not implied by) the argument for Theorem 9 in Manelli and Vincent (2007);

note the correction in Manelli and Vincent (2012).
Lemma 14. undV C clconv(exp, V).

Proof. Fix any V € und). We show the claim by constructing a convergent
sequence of points in V that are convex combinations of points in exp, V with
limit V.
For ¢ > 0, let
F.={fel>®0O)]|e< f<1}.

Up to renormalization, these functions are essentially bounded probability densities
that are uniformly bounded away from zero. By the Banach-Alaoglu theorem, F.
is weak*-compact because it is a weak*-closed subset of the dual unit ball.

Recall that V' € undV, that is, V is strictly suboptimal for every density
f € L*>*(O©) that is uniformly bounded away from 0. Thus, for every f € F.,
there exists Vy € V such that (Vy, f) > (V, f). By the continuity of the evaluation
(Aliprantis and Border (2007, Corollary 6.40)), for every f € F., there exists a
weak™*-open neighborhood Oy of f such that for all f € O, (Vy, f') > (V, f').
Thus, {Of : f € F.} is a weak™open cover of F.. The functionals f € F, that
expose a point in V are norm-dense in F; (see Lau (1976) and note that F. has
non-empty interior in L>(0)).

By compactness, we may then select a finite subcover {O,, : m =1,..., M} such
that, for every m = 1,..., M, there exists f’ € O, such that V,,, := Vy € exp_ V.

45Smilansky shows that a polyhedron is indecomposable if it has a strongly connected set of
triangular faces that touches all the facets of the polyhedron. Here, “touches” means “has
non-empty intersection with;” this is clear from the duality relationship described in the first
paragraph of the proof.
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Let
G={((Vi=V.f)so o', (V= V. f)) | f € F.} CR™.

The set G is compact and convex (because it is the image of the weak*-compact
convex set F. under a weak*-continuous linear map). Moreover, by construction
of the open cover {O,,}, G NRM = ), where RM the negative orthant. By the
Separating Hyperplane theorem, there exists a vector o € R} \ {0}, such that
a-y >0 for all y € G. Renormalize Zf\il a; = 1.

Define V. = Zf\il o;V; € V. For all f € I,

Ve, Y= Vi) =a-(V=V, f),.... (Ve =V, [)) > 0.

Now consider a sequence ¢,, — 0 and the corresponding sequence of f/gn con-
structed above. Since V is norm-compact, a subsequence of (V, ) converges to some
V e V. We show V = V', which proves the lemma. Recall that V' is undominated
and suppose V # V. Then there exists a set © C © of non-zero Lebesgue measure
such that V(#) > V(6) for all § € ©. Thus, any density f concentrated on ©
is such that (V, f) > (V, f). By norm-norm continuity of the evaluation, there
exists a strictly positive density f’ and some \~/5n for n large enough such that

(V, f) > (V... f"), a contradiction. O

Proof of Lemma 7. Similar to the proof for Lemma 14. Begin by assuming that
V' is undominated but strictly suboptimal for all probability densities f € L>(O).
Then, repeat the previous construction with e = 0 to obtain V € V such that
(V =V, f) > 0 for all probability densities f € L>°(©). This implies V >V a.e., a

contradiction. O
We extend Lemma 14 to cover all undominated mechanisms.
Lemma 15. undV C clconv(exp, V).

Proof. Suppose not, that is, V' € und V\cl conv(exp, V). By Lemma 14, V' ¢ undV,
that is, V' is optimal for some probability density f* € L°°(©) that is uniformly
bounded away from 0. Since clconv(exp, V) is a closed subset of the norm-compact
convex set V, it is norm-compact. By the Hahn-Banach Separation theorem, there
exists f € L*(O) such that

(V.fy>  max (V' f).

V’eclconv(exp, V)

Then f =ef + (1 —¢)f* (renormalized so that S f =1) is a probability density for
all sufficiently small e € (0, 1) since f* is uniformly bounded away from 0. Moreover,
V., f) > MAaXy el conv(exp, V) (V' f) by norm-norm continuity of the evaluation and

Berge’s maximum theorem (for the right-hand side). By the result due to Lau (1976)
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used in Lemma 14, there is another density f arbitrarily close to f in L°(©) and
therefore also uniformly bounded away from ¢ that exposes a point Vev. Again
by continuity and Berge’s maximum theorem, (V/ f) > MaXyec conv(exp, V) (V' f)
By definition, <V, f) > (V, f> Thus, the point V exposed by f cannot be in exp, V,
a contradiction. O

Proof of Lemma 8. The claim is a consequence of Milman’s converse to the Krein-
Milman theorem (see, e.g., Klee Jr (1957), Theorem 1.1). The theorem implies
that ext clconv(exp, V) C clexp, V since clconv(exp, V) is compact and convex.
In particular, by Lemma 15, every undominated extreme point of VV must be
in clconv(exp, V). But since clconv(exp, V) is a convex subset of V, every
undominated extreme point of V must also be in ext cl conv(exp, V) and therefore

arbitrarily close to a point in exp, V. O
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