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Abstract 

This paper estimates the causal effects of Medicare on mortality rates and life expectancy 
among the program’s early recipients. We construct a new dataset of more than 18 million 
individuals observed in the 1940 census linked to a death record in the FamilyTree database at 
FamilySearch. We use Medicare’s introduction in 1966 to identify its average treatment effects 
using three pre-specified approaches: a design based on a simple theoretical model of cohort 
mortality, an interrupted time-series design, and a staggered difference-in-differences design. 
All three show that Medicare increases life expectancy at age 65 for men born between 1885 
and 1915 by an average of one year. Medicare’s effects on life expectancy at age 65 are larger 
for cohorts with more potential years of exposure but similar for groups of high and low socio-
economic status. The effects for women are not robust across methods and specifications. JEL 
Codes: H51, I13, I18. 
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I. INTRODUCTION 

In the United States, Medicare, a federal health insurance program, is the primary source of 

coverage for people aged 65 and older. In 2023, Medicare enrolled 65.1 million people, cost 

over one trillion dollars, and accounted for 21 percent of US health expenditures and 3.7 

percent of Gross Domestic Product (Keehan et al. 2025). Almost everyone older than 65 is 

enrolled (Keehan et al. 2025; Moon 1996), and 91 percent of them rate Medicare’s performance 

highly (Pollitz et al. 2023). As a result, Medicare has been put forth as a blueprint for extending 

health insurance to the entire US population. But because Medicare’s costs have also ballooned, 

many have also proposed reforms to reduce its size.  

Alongside providing financial protection, which it has successfully done since its inception 

(Barcellos and Jacobson 2015; Caswell and Goddeeris 2020; Finkelstein and McKnight 2008; 

Goldsmith-Pinkham, Pinkovskiy, and Wallace 2023), Medicare aims to maintain population 

health by providing access to basic health care. An important justification for Medicare 

spending thus hinges on how well it supports medical care consumption among older people 

and the efficacy of that care in maintaining and improving their health.  

Yet, estimating causal effects of Medicare on the health and mortality of elderly recipients has 

proved difficult. One reason is that Medicare provides universal coverage at age 65 and has 

changed only a handful of times in its history. Studies focused on the age-65 discontinuity find 

that one-year mortality falls sharply at age 65 among people with urgent hospital admissions 

(Card, Dobkin, and Maestas 2009), but not in the overall population at age 65 (Card, Dobkin, 

and Maestas 2004; McWilliams et al. 2004; Polsky et al. 2009). Studies of Medicare’s 

introduction in 1966 (Chay, Kim, and Swaminathan 2010; Finkelstein and McKnight 2008), 

its extension to people with end-stage renal disease in 1972 (Andersen 2018), and its coverage 

of prescription drugs in 2006 (Huh and Reif 2017) find mixed effects on mortality.1  

Another challenge is that none of these studies observes longer-term mortality rates, when 

Medicare’s effects may be largest. Theoretical models (Dalgaard and Strulik 2014; Grossman 

1972; Lleras-Muney and Moreau 2022) and empirical studies (Leinonen, Heikkinen, and Jylhä 

2001; Levinsky and Schiff 2021) document that health accumulates and deteriorates slowly. 

Therefore, the benefits of Medicare, which increases the use of preventive care, chronic care 

 
1 Estimated effects of public health insurance for low-income non-elderly adults have this pattern, too. Graves et 
al. (2020), Miller, Johnson and Wherry (2021), and Wyse and Meyer (2025) all use specific data on low-income 
mortality rates and find health improvements that are indetectable in aggregate data (Black et al. 2022).  
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management, and diagnostic tools (Card, Dobkin, and Maestas 2008; Finkelstein 2007; 

McWilliams et al. 2007; McWilliams et al. 2003), may not materialize for many years, 

especially among relatively healthy people. Indeed, recent evidence suggests that providing 

health insurance to low-income children has significant long-term impacts (Boudreaux, 

Golberstein, and McAlpine 2016; Brown, Kowalski, and Lurie 2020; Goodman-Bacon 2021; 

Miller and Wherry 2019; Thompson 2017; Wherry and Meyer 2016; Wherry et al. 2018). 

Whether this evidence applies to adults who are no longer growing is unknown.  

This paper estimates the causal effects of the introduction of Medicare on the mortality rates 

and life expectancy of the program's early recipients. Medicare began providing health 

insurance for hospital stays and physician visits to (almost) all Americans over the age of 65 

in July 1966. Only about half of this group had health insurance in the early 1960s; they faced 

large medical costs, and often forwent potentially life-saving medical care (CHAS and NORC 

1984). Soon after Medicare’s passage, however, people over 65 began to use substantially more 

medical care and faced lower financial risk (Finkelstein and McKnight 2008). 

We generate hypotheses about how the existence of Medicare may have affected its recipients 

using the theoretical model of cohort mortality in Lleras-Muney and Moreau (2022). This 

framework first predicts that Medicare should have dynamic effects on a cohort’s log mortality 

rates that vary with the amount of time they have been eligible. Additionally, the shape of these 

effects provides evidence on whether Medicare changed the evolution of health (investments 

or depreciation rates) or the severity of health insults (the variance of health shocks or the death 

threshold). These insights suggest that the key quantities necessary to understand Medicare’s 

effects on longevity are causal effects on mortality for a given cohort in the years after they 

become eligible for Medicare. Our empirical analysis targets these parameters. 

Our ability to estimate such effects hinges on detailed measures of cohort mortality based on a 

new dataset of more than 18 million white people observed in the 1940 census who can be 

linked to a death record. The age profiles of mortality in our data closely match those from 

both the Social Security Administration and the Human Mortality Database. However, we also 

observe covariates that enable us to investigate heterogeneity in ways that are not possible 

using existing data sources. These data allow us to map causal effects on mortality rates into a 

long-run outcome: cohort life expectancy conditional on surviving to age 65. 
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We pre-specify three complementary research designs that identify these effects under distinct 

assumptions.2 First, for each cohort, we estimate the parameters of the theoretical model using 

pre-Medicare data and use them to construct counterfactual mortality rates without Medicare 

during their post-Medicare years. The validity of this approach depends on the correct 

specification of the model and the reliability of its parameter estimates. Our second approach 

is an interrupted time series (ITS) design based on the assumption that untreated log mortality 

rates in adulthood are linear in age, which allows us to form counterfactual mortality using the 

estimated pre-Medicare slope of a cohort’s log mortality age profile. Linearity is a qualitative 

prediction of the model and a well-known empirical regularity first observed by Gompertz in 

1825 (Gompertz 1825). Finally, we employ a staggered difference-in-differences (DiD) design 

that compares changes in log mortality across cohorts. Here, we rely on a parallel trends 

assumption that justifies using observed mortality changes for older cohorts who gained 

Medicare later in life to form counterfactual mortality trends. All three designs identify the 

impact of Medicare as it was experienced by affected cohorts between 1966 and 2015, on 

average, 14-18 years later. 

Results from all three empirical approaches align closely for men, showing that Medicare 

increases life expectancy at age 65 by about one year on average: the effect gradually increases 

from zero to roughly 2 years across the 1885-1910 birth cohorts and then decreases for the 

1915 birth cohort. Increases in life expectancy arise from dynamic effects on log mortality rates 

that are initially small but grow with time on the program. These findings closely match the 

predictions from our theoretical model and suggest that Medicare either increases health 

investments or slows the rate of aging. We also find that Medicare had somewhat greater effects 

on the log of mortality for lower-educated subgroups, but these effects do not translate to 

detectable differences in life expectancy except for women with the least education. The results 

for women, however, are inconclusive. DiD produces results similar to those for men, but ITS 

results often has the opposite sign. 

Ours are the first estimates of the effect of Medicare on long term mortality and life expectancy. 

Previous work, such as Finkelstein and McKnight (2008)’s seminal study of Medicare’s 

introduction, necessarily relies on coarser age groups available in Vital Statistics data. Our data 

provide accurate mortality rates by single year of age, which allow us to implement new 

 
2 To empirically ground our design choices and still conduct valid statistical inference, we use a random 20 percent 
of our sample to test identifying assumptions and make key specification choices. Our full analysis plan and code 
will be archived with the Open Science Framework.  
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identification approaches that uncover meaningful long-term mortality reductions. The 

program’s introduction is also the only opportunity to observe large groups who first became 

eligible for Medicare at ages older than 65, and we find very similar mortality effects across 

these groups on their log mortality rates. In principle, our estimates also incorporate spillover 

effects, although we find little direct evidence of them, despite Medicare’s documented 

spillovers onto the healthcare sector (Clemens and Olsen 2021; Finkelstein 2007). Medicare 

has grown tremendously in scope, scale, and cost since 1966. Our findings suggest that these 

outlays likely still confer meaningful benefits to population health.  

Our findings also add to a growing number of reevaluations of the health effects of President 

Lyndon Johnson’s Great Society programs. Like us, this work documents substantial long-run 

benefits of Medicaid (Boudreaux, Golberstein, and McAlpine 2016; Clay et al. 2024; Clayton 

2019; Goodman-Bacon 2018; Goodman-Bacon 2021), Head Start (Ludwig and Miller 2007), 

food assistance (Hoynes, Schanzenbach, and Almond 2016) and community health centers 

(Bailey and Goodman-Bacon 2015). A key lesson is that carefully designed studies with long 

time frames frequently uncover strong evidence of benefits that short-run correlational 

evidence misses (see also Aizer et al. 2024; Aizer, Hoynes, and Lleras-Muney 2022).3 

II. INSURANCE AND HEALTH CARE BEFORE AND AFTER MEDICARE 

Poor health was an increasingly burdensome problem for American seniors during the decades 

prior to Medicare’s passage. Private health insurance, initially developed in the 1920s, 

exploded after World War II (Thomasson 2003). The war also gave millions of soldiers new 

experience with regular medical care, and their subsequent demand for it was met with a rising 

supply. Innovations developed during WWII, such as antibiotics, blood transfusions, and 

ultrasounds (e.g. Van Tiggelen and Pouders 2003) found civilian applications, and new federal 

hospital subsidies greatly expanded capacity (Chung, Gaynor, and Richards-Shubik 2017). 

These developments were good for population health, but created an intractable affordability 

problem for seniors.  

People over age 65 got little financial protection from private insurance. Since many were 

retired, they rarely had insurance through employers. Individual market policies were 

medically underwritten and thus unavailable or prohibitively expensive. Blue Cross Blue 

 
3 We are not aware of other papers that show longer-run effects for elderly people, except for Deryugina and Reif 
(2023) who use the model in Lleras-Muney and Moreau (2022) to demonstrate that the long-term effects of 
pollution on mortality are larger than short term effects. 
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Shield sold community-rated plans, but adverse selection pushed up their premiums as well 

(Thomasson 2004). Figure 1a plots the age profile of health insurance rates for white 

respondents in the 1963 National Health Interview Survey (NHIS) and shows that just 56 

percent of people age 65 and older had any health insurance coverage. Moreover, insured 

people still faced substantial out-of-pocket costs. Most only held a policy that covered hospital 

expenses, and even those policies were far from comprehensive. Just over half of elderly 

insured people with hospital stays in 1962 reported that insurance paid the majority of their 

bills (Epstein and Murray 1967, Table 11.13).  

Without the financial protection of insurance, “[c]hoices for uninsured or underinsured elderly 

patients needing hospital service were to spend their savings, rely on funding from their 

children, seek welfare…or hope for charity from hospitals” (Stevens 1996). A small number 

of low-income elderly people had their care financed by welfare departments or lived in state 

institutions.4 Charity providers often provided low quality care, had long wait times, and could 

refuse service or pursue aggressive collection practices (Stevens 1989).5  

Statistics on the use of basic health care services reflect these problems. Figure 2b plots the 

age profile of the number of nights in hospital in the past 12 months over age pooling data from 

1963-1965 NHIS. Prior to 1966, the data show small gaps in the intensity of hospital use for 

older versus younger people; a sharp contrast with the measurably poorer health of the elderly.6  

In response to these conditions, the Johnson administration made Medicare the signature 

component of the 1965 Social Security Act amendments.7 Medicare provided two kinds of 

 
4 These programs included Old Age Assistance, which paid for some medical costs since 1950, or the short-lived 
Medical Assistance for the Aged program, which mainly operated in a handful of large states. These programs 
were small. They means test, their legal claim on the resources of a recipient’s children made many people 
reluctant to apply, and they often did not cover important services (Goodman-Bacon and Nikpay 2017). 
5 In 1959, a Senate subcommittee on aging held hearings during deliberations on a health insurance bill introduced 
by Senator Aime Forand. One staffer reported that “The old folks lined up by the dozen every place we went…and 
they didn’t talk much about housing or recreational centers or part time work. They talked about medical care” 
(quoted in Starr 1982, page. 368). 
6 Relative to people aged 50-64, respondents aged 65-79 in one 1963 survey reported more serious symptoms like 
shortness of breath after light work (29 versus 16 percent), sudden weakness or faintness (26 versus 17 percent), 
or painful/swollen joints (42 versus 31 percent) (CHAS and NORC, 1984). Mortality rates in 1960 were more 
than three times higher for the 65-79 group than the 50-64 group (4,557 versus 1,433 deaths per 100,000), and 
more of these deaths came from cardiovascular causes (49 percent versus 41 percent) (NCHS, 1963). 
7 Despite the long history of public health insurance bills, “the outcome of the debate over Medicare was by no 
means predictable” (Stevens 1989; pg. 47). A Medicare bill pushed by the Kennedy administration was narrowly 
defeated in 1962, but during the 1964 presidential campaign President Johnson “repeatedly promised that if her 
was elected he would see to it that Congress enacted a program of national health insurance for men and women 
sixty-five and over” and after the Democrats gained control of congress “no one in the government doubted that 
he would get it” (Harris 1966). The administration proposed a universal hospital insurance program for the elderly 
with no premiums and minimal cost-sharing. Congressional Republicans preferred a means-tested system run by 
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insurance to almost all people age 65 and older. Part A provided compulsory hospital insurance 

with a $40 annual deductible and no cost sharing for stays under 60 days. Part B offered 

optional medical and surgical insurance (without drug or long-term care coverage) with 20 

percent coinsurance and a $3 per month premium (Gornick et al. 1996). 93% of seniors enrolled 

in it (West 1971). Upon signing it into law, President Johnson declared, “no longer will older 

Americans be denied the healing miracle of modern medicine” (Peters and Woolley 1999).  

Medicare officially began on July 1, 1966, and it immediately and dramatically increased 

insurance coverage for the elderly. Figure 1 also plots the age profile of health insurance 

coverage from the 1968 NHIS and shows a large jump at age 65. Health insurance rates rose 

for all ages, but for people aged 45-64 the average increase was 5 percentage points, while for 

people over 65, the average increase was 41 percentage points. Given the incompleteness of 

insurance coverage, Finkelstein (2007) estimates an even larger 75 percentage point increase 

in “meaningful health insurance.” One survey of Social Security recipients found that in 

Medicare’s first year, patients paid about 47 percent of medical costs compared to 77 percent 

in the year prior (West 1971). Using an age-based DiD design, Finkelstein and McKnight 

(2008) find that Medicare cut out-of-pocket health care spending in the top decile in half.   

Changes in health care use reflect these dramatic changes in health insurance coverage. Figure 

1b shows that the average annual number of nights spent in a hospital among people over 65 

jumped from about 2 to 3 after 1966, while it stayed flat for people between the ages of 55 and 

64. Today, this remains true: Individuals on Medicare use health care at much higher rates than 

those without (Card, Dobkin, and Maestas 2008), and they have lower medical expenditure risk 

(Barcellos and Jacobson 2015).  

 
the states, and the American Medical Association proposed subsidizing the purchase of private fee-for-service 
insurance plans. Ultimately, the legislation that created Medicare combined all three proposals. Even this was a 
surprise: “On March 12, 1965 [Senate Finance Committee Chair, Wilbur] Mills stunned [Undersecretary of the 
Department of Health, Education and Welfare, Wilbur] Cohen by asking if it would be possible to amalgamate a 
compulsory hospitalization program, a voluntary medical insurance program, and an expansion of coverage for 
the indigent” (Cunningham and Cunningham 1997; pg 143). 
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III. POTENTIAL EFFECTS OF MEDICARE ON MORTALITY 
 

We use the model developed by Lleras-Muney and Moreau (2022) to structure our hypotheses 

about how Medicare’s introduction may have affected mortality and longevity. Parental health 

and genes, as well as in utero conditions, endow individuals with an initial level of health 

𝐻𝐻~𝑁𝑁(𝜇𝜇𝐻𝐻, 1) that is normally distributed in the population with a standard deviation of one. 

Thereafter, health evolves at each age a as follows:  

𝐻𝐻𝑎𝑎 = 𝐻𝐻𝑎𝑎−1 − 𝛿𝛿𝑎𝑎𝛼𝛼 + 𝐼𝐼 + 𝜀𝜀𝑎𝑎 

Health grows due to the constant per-period average health investments 𝐼𝐼; it deteriorates with 

age at an increasing rate (given by the aging function 𝛿𝛿𝑎𝑎𝛼𝛼 with 𝛼𝛼 > 1); and it receives normally 

distributed shocks 𝜀𝜀𝑎𝑎~𝑁𝑁(0,σ). This additive law of motion for health means that 𝜀𝜀𝑎𝑎 captures 

both direct health shocks and random variation in investments. Individuals die when their 

health falls below a certain threshold, 𝐻𝐻, which is normalized to zero. In addition, a share 𝜅𝜅 

randomly dies of accidental deaths each period after age 16. Despite its simplicity, this model 

has been shown to provide an excellent description of the mortality of populations from birth 

to death in stationary environments. It also quantitatively delivers log mortality curves that are 

linear in age after a certain age, consistent with observations by Gompertz (1825).  

The model’s seven parameters (𝜇𝜇𝐻𝐻, 𝛿𝛿,𝛼𝛼, 𝐼𝐼,𝜎𝜎, 𝜅𝜅,𝐻𝐻), define just a handful of channels through 

which Medicare may change mortality. Medicare may affect health investments (𝐼𝐼) through 

both a price effect and an income effect arising from its health insurance structure, or 

equivalently, it may shift the health shock distribution. An alternative view of improved access 

to preventive and diagnostic care is that Medicare may slow the rate of aging (𝛿𝛿 or 𝛼𝛼). Medicare 

may also lower the variance of health or health investment shocks (σ) for several reasons. Its 

insurance function transfers resources from good states (when individuals pay for premiums) 

to bad states when they suffer costly health shocks that are now covered by insurance, resulting 

in lower health in good times but higher health after bad health shocks. Medicare also reduces 

the financial burden of health shocks, which may help to maintain health investments, which 

are also reflected in 𝜀𝜀𝑎𝑎.  Finally, by leading to more and better acute medical care, Medicare 

may lower the threshold for dying (𝐻𝐻) keeping alive individuals who would otherwise die. 

Medicare cannot affect initial health, 𝜇𝜇𝐻𝐻, and we assume that it does not affect mortality from 

accidental causes, 𝜅𝜅 (Bhaumik et al. 2023). 
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Figure 2a plots the simulated effect on a cohort’s Gompertz curve from changes to each of 

these parameters. A ten percent increase in health investments (panel A.i) or a 5 percent 

decrease in the depreciation rate (panel A.ii) at age 65 simply makes the Gompertz curves 

flatter;8 log mortality rates do not shift immediately, but they do rotate down so that mortality 

rises more slowly as people age. The reason mortality effects do not show up immediately but 

become visible over time is that a lot of individuals in the population will receive a boost in 

their health (or slow down the rate of aging), but because they are far from the death threshold, 

these changes do not affect mortality rates. By contrast, a decline in the variance of health 

shocks from 1 to 0.6 (panel A.iii) or the threshold for dying from 0 to -1 (panel A.iv), leads to 

immediate downward shifts in log mortality rates and then steeper slopes thereafter because 

the less healthy surviving cohort is very sensitive to subsequent shocks. In the long run, 

however, log mortality rates are higher under a smaller shock variance because while negative 

shocks are less negative, positive shocks as also less positive. 

The differences between the two Gompertz curves from Figure 2a, which we plot in Figure 

2b, are the treatment effects resulting from a change in each parameter. These predictions 

motivate our empirical approach because they show that dynamic treatment effects within a 

cohort, specifically the intercept and the slope of log mortality after cohorts gain Medicare 

eligibility, are crucial for making inferences about whether and how the program affects life 

expectancy.  

Research on Medicare and mortality, however, looks at short-run effects for narrow age groups. 

Contemporaneous studies using the age-discontinuity in Medicare eligibility necessarily 

identify causal effects at age 65, and then only find immediate mortality reductions for severely 

ill patients (Card, Dobkin, and Maestas 2009). Research on the extension of Medicare to people 

with end-stage renal disease (in 1972) and the addition of prescription drug coverage (in 2006) 

finds reductions in mortality, but only within 4 to 6 years after reforms (Andersen 2018; Dunn 

and Shapiro 2019; Huh and Reif 2017). Existing research on Medicare’s introduction focuses 

on five- or ten-year age groups and comes to mixed conclusions (Chay, Kim, and Swaminathan 

2010; Finkelstein and McKnight 2008). None of these studies estimates longer-run mortality 

effects within cohorts needed to quantify Medicare’s effect on life expectancy, nor are they 

able to measure mortality for subgroups other than by race, sex, or geography. 

 
8 There are two aging parameters. The effects of changing either are similar so we only display one.  
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In fact, randomized trials of the kinds of care available at the time do suggest longer-run effects. 

For example, the MRFIT randomized intervention, which aimed to lower cholesterol, lower 

blood pressure, and reduce smoking, only generated mortality declines after ten years, though 

they remained insignificant (Multiple Risk Factor Intervention Trial Research Group 1982; 

Multiple Risk Factor Intervention Trial Research Group 1990; Multiple Risk Factor 

Intervention Trial Research Group 1996). Clinical trials have shown that cholesterol-lowering 

drugs reduce all-cause mortality over 20 years (Ford et al. 2016), but these effects are not 

detectable within the first five years (Ray et al. 2010). Smoking cessation trials show declines 

in mortality that are significant after 14 years but not detectable earlier (Anthonisen et al. 2005). 

Medicare also improves access to diagnostic and preventive services, which could also benefit 

individuals with a delay (for evidence on colonoscopies, see (Niikura et al. 2017). Health 

insurance has also been shown to improve health behaviors and mental health in the short run 

(Baicker et al. 2013), which could lower mortality eventually. 

In sum, the model predicts that Medicare could have large long-term effects, some of which 

may not be detectable in the short run and which empirical approaches used thus far may have 

missed. Additional empirical evidence suggests that the benefits of medical care could increase 

over time at least when measured by mortality rate declines. We estimate these dynamic 

benefits using various approaches next. 

IV. DATA SOURCES AND OUTCOME MEASURES 

IV.A. Data Sources 

Census-Tree data. Our primary individual-level data come from the 1940 full-count census 

linked to information available from FamilyTree at FamilySearch, referred to hereafter as the 

Census-Tree. The 1940 full-count records, released on April 2, 2012, are publicly available on 

the Integrated Public Use Microdata Series (IPUMS) website (Ruggles et al. 2024). 

FamilySearch resources “help millions of people around the world discover their heritage and 

connect with family members” (FamilySearch 2025). It has a website that provides access to 

historical record collections and a wiki-style platform, called Family Tree, through which 

individuals can gather information about their ancestors. In 2020, there were over 1.2 billion 

individual profiles on Family Tree and over 12 million registered users, making it one of the 

largest genealogy websites in the world (Price et al. 2021). FamilySearch profiles contain 

information about deceased individuals, including sex, race/ethnicity, date of birth, place of 
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birth, date of death, and state of death, along with sources attached to support the validity of 

this information. We link the census records with profiles on the Family Tree using a matching 

file that FamilySearch shares with us. The 1940 Census includes variables such as education, 

income, and place of residence. 

Social Security Administration cohort tables. These tables track the mortality and life 

expectancy of men and women in the US for cohorts born in 1900 and thereafter (Social 

Security Administration 2020). These data are only available at the aggregate (national) level 

by sex. These national-level cohort tables are constructed using death counts by five-year age 

groups from published vital statistics data pertaining to death registration deaths only, matched 

to population estimates constructed by the Census Bureau based on Census data (for 1900-

1967). Because the vital registration system of the US was not complete until 1933, the SSA 

data are not necessarily representative of the nation for these years. We use them to assess the 

quality of the Census-Tree data and to estimate the structural model, which requires data from 

birth to death.  

IV.B Sample Construction and Sample Selection 

We linked the 1940 full-count census, which includes 132 million people, to the Family Tree. 

We obtain a sample of the 49 million individuals that are linked – this process we followed to 

construct the sample is described in Figure A.1. We then restrict attention to individuals born 

between 1885-1915 – these cohorts are estimated to be extinct and so we should observe age 

at death for everyone. We only keep observations with valid birth and death dates.9 We further 

restrict our main analysis to whites because their coverage in the Family Tree database is more 

complete than for other race groups (Price et al. 2021) and because Medicare affected access 

to medical facilities for Black Americans in a much different way than it did for white 

Americans (Anderson, Charles, and Rees 2024; Smith 2016).  

The final data set includes 18,485,813 individuals, accounting for 32.2% of our target 

population: white 1940 Census respondents born between 1885 and 1915. Men in our sample 

 
9 We rely on the year of birth recorded in the Family Tree in our analysis because the 1940 Census does not ask 
birth year and only reports age ( “Enter the age of the person at his last birthday before 12:01 a.m., April 1, 1940.”). 
As a result, the imputed birth year may not equal the actual birth year. However, the birth year variable from 
Family Tree was scraped because people would have had the chance to find birth records and make corrections.  
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live to age 72.9 on average, and women live to age 79.1, although the 90% percentile of the 

year of death in the full sample is 1994 for men and 2000 for women. 

IV.C Outcome measures 

Our sample includes people, 𝑖𝑖, who belong to a birth cohort 𝐶𝐶𝑖𝑖 = 𝑐𝑐 ∈ [1885,1915] and die at 

discrete age 𝑌𝑌𝑖𝑖 = 𝑎𝑎 ∈ [40,115]. Ages, periods, and cohorts are related by the identity 𝑎𝑎 = 𝑡𝑡 −

𝑐𝑐, and in our data these deaths necessarily occur in time periods 𝑡𝑡 ∈ [1940, 2023]. We observe 

1940 covariates 𝑋𝑋𝑖𝑖, and stratify our analysis by sex so all quantities in this section implicitly 

apply to men and women as measured in 1940. 

The age-specific mortality rate for cohort 𝑐𝑐 equals the probability of dying at age 𝑎𝑎 conditional 

on surviving to age 𝑎𝑎: 

                                    𝑞𝑞�𝑐𝑐,𝑎𝑎 ≡
𝑃𝑃(𝑌𝑌𝑖𝑖 = 𝑎𝑎|𝐶𝐶𝑖𝑖 = 𝑐𝑐)
𝑃𝑃(𝑌𝑌𝑖𝑖 ≥ 𝑎𝑎|𝐶𝐶𝑖𝑖 = 𝑐𝑐)  =

𝐹𝐹𝑐𝑐(𝑎𝑎) − 𝐹𝐹𝑐𝑐(𝑎𝑎 − 1)
1 − 𝐹𝐹𝑐𝑐(𝑎𝑎)   .                             (1) 

𝐹𝐹𝑐𝑐(⋅) is the c.d.f. of 𝑌𝑌𝑖𝑖 among members of cohort 𝑐𝑐. The dynamics of 𝑞𝑞�𝑐𝑐𝑐𝑐 thus come from the 

shape of 𝐹𝐹𝑐𝑐(⋅).10 We work with log mortality rates 𝑞𝑞𝑐𝑐,𝑎𝑎 ≡ ln (𝑞𝑞�𝑐𝑐,𝑎𝑎), and denote measured log 

mortality rates in our sample by 𝑞𝑞�𝑐𝑐,𝑎𝑎.  

IV.D Representativeness and Quality of Census Tree Data  

A crucial concern with the data we create represents the population we aim to study. Table 1 

shows that our sample (first column) appears to be representative of the target population 

(Whites) in the 1940 census (last column) in terms of year of birth, ethnicity, veteran status, 

occupation score and educational levels. 11 However, it includes poorer households, fewer 

women, more married people, fewer people either born or residing in the Northeast in 1940.  

We correct the observable imbalance by re-weighting the linked sample to make it 

representative of the target population (Bailey et al. 2020; Lleras-Muney, Price, and Yue 2022; 

Yue et al. 2023). Specifically, we estimate the probability, 𝑝𝑝(𝑋𝑋𝑖𝑖 ), of a successful match 

 
10 This one-year mortality rate, 𝑞𝑞�𝑐𝑐,𝑎𝑎, equals the integral of the continuous-time hazard between age 𝑎𝑎 and 𝑎𝑎 + 1. 
Exact dates of birth and death are not always accurate, so we measure mortality rates in discrete units and use life-
table methods to calculate life expectancies. 
11 When estimating the probability of matching we use the birth year variable from the Census so we can observe 
cohort for matched and unmatched people and use it to construct the weights. We then restricted the Census-Tree 
sample to those whose birth year falls within two years of their Census birth year, which it drops 5.3% of the 
Census-Tree sample (see Figure A.1). Therefore, the Census-Tree sample of 1885-1915 cohorts matches to birth 
cohorts 1883-1917 in IPUMS 1940 census.     
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between our sample and the 1940 full-count Census as a function of the covariates using a robit 

model (Newson and Falcaro 2023; Seaman and White 2013).12 When constructing mortality 

rates from the Census-Tree data, we reweight matched observations by 𝑝𝑝(𝑋𝑋𝑖𝑖)−1. The second 

column of Table 1 shows that, as expected, reweighting brings the sample covariate means 

substantially closer to the target population means (Tables A.1a and A.1b).  

To assess the quality of death information in our data, we compare the weighted age-specific 

mortality rates in our data with those in the SSA cohort life tables and those in the Human 

Mortality Database (HMD) cohort death rates for the U.S. HMD data includes death rates 

starting in 1993 for all our studied birth cohorts, 1885-1915 (Human Mortality Database 2023). 

Figure A.2 shows that the Census-Tree mortality rates are comparable to the SSA life tables 

and HMD cohort death rates for all birth cohorts and for both men and women, albeit slightly 

lower, particularly in old age. This likely occurs because our Census-Tree sample excludes 

Black people and underrepresents immigrants, both of whom had higher mortality rates than 

white Americans. As a result, Figure 3 shows that life expectancy at age 65 is 0.5 to 1 year 

higher in the Census-Tree sample than in the SSA and HMD data. Notably, the trends in life 

expectancy at age 65 across birth cohorts are similar between the Census Tree and HMD data 

for both men and women. For men, life expectancy remains relatively flat for the 1885-1900 

cohorts and then gradually increases for the 1900-1915 cohorts. For women, it first steadily 

increases between the 1885 and 1905 cohorts and then plateaus for the subsequent 1906-1915 

cohorts.     

V. EMPIRICAL STRATEGY 

V.A Potential outcomes and target parameters 

The objects of interest in this paper are causal parameters that describe Medicare’s effect on 

mortality rates or functions of those parameters that describe its effect on life expectancy.  To 

define them, we write potential outcomes in terms of the time and the age at which one first 

gains Medicare. Units from cohort 𝑐𝑐  become treated by Medicare at time 𝐺𝐺𝑡𝑡(𝑐𝑐) =

𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐 + 65, 1965) = 𝑔𝑔𝑡𝑡  which occurs when they are age 𝐺𝐺𝑎𝑎(𝑐𝑐) = 𝑚𝑚𝑚𝑚𝑚𝑚(65, 1966 − 𝑐𝑐) =

𝑔𝑔𝑎𝑎. The only people who gained Medicare after age 65 necessarily got it in 1966, and the only 

 
12 In addition, we further truncated the weights at the 99th percentile (Seaman and White 2013). We include the 
following covariates (𝑋𝑋𝑖𝑖) available in the 1940 full-count census: sex, race, ethnicity, marital status, years of 
schooling, household total income, family size, labor force participation, occupation income scores, year of birth, 
state of residence, and place of birth. We estimated the model separately by sex. 
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people who gained Medicare after 1966 necessarily got it at age 65. The values 𝑔𝑔𝑡𝑡  and 𝑔𝑔𝑎𝑎 

define potential outcomes for age-at-death (Robins 1986; Rubin 1974): 𝑌𝑌𝑖𝑖(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎). We use 

𝑌𝑌𝑖𝑖(∞)  to denote potential outcomes in the absence of Medicare. Potential mortality rates 

𝑞𝑞�𝑐𝑐,𝑎𝑎(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) have the same form as (1) but use potential instead of realized outcomes. 

Our building block target parameters are average treatment effects on the log mortality rates of 

each cohort at each age:13 

                      𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) ≡ 𝑞𝑞𝑐𝑐,𝑎𝑎(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) − 𝑞𝑞𝑐𝑐,𝑎𝑎(∞)                  (2) 

Since Medicare “treats” all members of a cohort we take the phrase “on the treated” to refer to 

all members of a cohort exposed to Medicare in year 𝑔𝑔𝑡𝑡 at age 𝑔𝑔𝑎𝑎. This parameter reflects many 

different channels through which Medicare may have affected mortality: the direct increase in 

(meaningful) insurance coverage and health care use, the program’s effect on health system 

capacity or inputs (Finkelstein 2007), technology (Clemens and Olsen 2021), or prices 

(Clemens and Gottlieb 2014). The collection of 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎)s are within-cohort event-study 

effects that fully characterize the effect of Medicare’s existence on mortality and lifespan. 

Because there are too many to report individually, we summarize them in three intuitive ways.  

First, we report average treatment effects by event-age, 𝑒𝑒 ≡  𝑎𝑎 − 𝑔𝑔𝑎𝑎, to show within-cohort 

dynamic effects as in Figure 2b: 

   𝐴𝐴𝐴𝐴𝐴𝐴(𝑒𝑒) ≡ ∑ ∑ 𝑤𝑤(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) × 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑔𝑔𝑎𝑎 + 𝑒𝑒)𝑇𝑇
𝑔𝑔𝑡𝑡=1966

𝐴𝐴
𝑔𝑔𝑎𝑎=65   .        (3) 

The weights 𝑤𝑤(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) equal the share of the population who survived to their Medicare age 

who are in the (𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) cohort.  This answers the question: how did Medicare affect mortality 

rates of its beneficiaries on average in the years after they gained eligibility? 

We report cross-cohort heterogeneity by summarizing each cohort’s post-Medicare 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎)s with an intercept term (𝛿𝛿(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎)) and a slope term (𝜃𝜃(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎)). These are 

simply weighted averages that equal coefficients from a regression of each cohort’s 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) on a constant and 𝑒𝑒 for 𝑒𝑒 > 0: 

 𝛿𝛿(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) ≡ ∑ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑔𝑔𝑎𝑎+𝑒𝑒)
𝐴𝐴+1

𝐴𝐴
𝑒𝑒=0 − 𝜃𝜃(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) �𝑔𝑔𝑎𝑎+𝐴𝐴

2
 �          (3a) 

 
13 We use log mortality rates for several reasons. First, parameters defined in logs are easier to interpret across 
ages with different mortality rates (Deaner and Ku 2024). Second, for reasons discussed below, we believe that 
identification of log parameters is credible, while other transformations are not (Roth and Sant'Anna 2023). 
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𝜃𝜃(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) ≡
∑ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑔𝑔𝑎𝑎+𝑒𝑒)�𝑒𝑒−𝐴𝐴2�
𝐴𝐴
𝑒𝑒=0

∑ �𝑒𝑒−𝐴𝐴2�
𝐴𝐴
𝑒𝑒=0

2                  (3b) 

Cohorts born before 1901 gained Medicare eligibility after age 65, and are the only cohorts in 

Medicare’s history to gain access later in life. Therefore, heterogeneity in 𝛿𝛿(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎)  and 

𝜃𝜃(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) across 𝑔𝑔𝑎𝑎  is relevant to policy questions about changes to Medicare’s eligibility 

structure. The model in section III also suggests that their magnitudes provide information 

about how Medicare affects health production.  

Finally, we use life-table methods to combine observed and counterfactual mortality rates 

(𝑞𝑞𝑐𝑐,𝑎𝑎(∞) ≡ 𝑞𝑞𝑐𝑐,𝑎𝑎 − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎)) to construct average effects of Medicare on life expectancy 

at age 65: 

𝐴𝐴𝐴𝐴𝑇𝑇𝐿𝐿𝐿𝐿(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) = 𝐸𝐸[𝑌𝑌𝑖𝑖(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) − 𝑌𝑌𝑖𝑖(∞)|𝐺𝐺𝑡𝑡(𝐶𝐶𝑖𝑖) = 𝑔𝑔𝑡𝑡,𝐺𝐺𝑎𝑎(𝐶𝐶𝑖𝑖) = 𝑔𝑔𝑎𝑎,𝑌𝑌𝑖𝑖 ≥ 65]      (4) 

It is important to compute life expectancy gains in addition to impacts on mortality because the 

former is shaped both by Medicare’s causal effects on mortality and the level of mortality (Dahl 

et al. 2024). Thus a group that experiences the largest drop in mortality is not necessarily the 

group that will experience the largest gains in life expectancy.  

Both empirical evidence and the model of health capital accumulation discussed in section III 

point to potential cross-sectional heterogeneity in the effects of health insurance on mortality. 

Our linked data uniquely allow us to target causal effects by education and income subgroups. 

These are comparable to the parameters just defined, but involve mortality rates for subgroups 

in 1940, 𝑞𝑞�𝑐𝑐,𝑎𝑎(𝑥𝑥) ≡ 𝑃𝑃�𝑌𝑌𝑖𝑖 = 𝑎𝑎�𝐶𝐶𝑖𝑖 = 𝑐𝑐,𝑋𝑋𝑖𝑖 = 𝑥𝑥�
𝑃𝑃�𝑌𝑌𝑖𝑖 ≥ 𝑎𝑎�𝐶𝐶𝑖𝑖 = 𝑐𝑐,𝑋𝑋𝑖𝑖 = 𝑥𝑥� .  

V.B Identification and estimation 

We rely on three distinct assumptions on untreated log mortality rates to identify the 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎)  parameters: the full structure of the model from section III, linearity of 

untreated log mortality rates, and a parallel trends assumption across cohorts. All three 

strategies require an assumption that Medicare does not affect mortality before a cohort gains 

eligibility.  

Assumption NA. No anticipation 

For unit 𝑖𝑖 from cohort 𝐶𝐶𝑖𝑖 = 𝑐𝑐 eligible for Medicare at age 𝑔𝑔𝑎𝑎 in year 𝑔𝑔𝑡𝑡:  

𝑌𝑌𝑖𝑖(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) = 𝑌𝑌𝑖𝑖(∞)   𝑖𝑖𝑖𝑖  𝑌𝑌𝑖𝑖(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) < 𝑔𝑔𝑎𝑎 
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Assumption NA says that anyone who dies before reaching Medicare age in a world with 

Medicare, would have died at the same age without Medicare. This implies that 𝑞𝑞𝑐𝑐,𝑎𝑎(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) =

𝑞𝑞𝑐𝑐,𝑎𝑎(∞)  and thus 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) = 0  for 𝑎𝑎 < 𝑔𝑔𝑎𝑎 , which makes pre-Medicare mortality 

informative about counterfactual mortality rates. Violations of this assumption could arise if 

people anticipate their own eligibility, if Medicare has general equilibrium effects that alter 

mortality of not-yet-eligible people, or if some people get Medicare before age 65.14 Below we 

discuss how anticipation may affect our estimates and we test for it.  

V.B.1 Structural Design 

Our first approach uses the model in section III to estimate counterfactual mortality rates. For 

each cohort, we estimate all of the model’s parameters (normalizing 𝐻𝐻 = 0) using data from 

birth until the age they qualify for Medicare. We make only one modification to the baseline 

model: we allow for I to be different in 1918 to account for the excess mortality associated with 

WWI and the flu pandemic; 𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓. We then simulate mortality through age 95 using these values 

and construct counterfactual log mortality rates, 𝑞𝑞�𝑐𝑐,𝑎𝑎
𝑆𝑆𝑆𝑆𝑆𝑆(∞)  as a function of the estimates 

(𝜇̂𝜇𝐻𝐻, 𝛿𝛿,𝛼𝛼�, 𝐼𝐼, 𝐼𝐼𝑓𝑓𝑓𝑓𝑓𝑓,𝜎𝜎�, 𝜅̂𝜅, 0). We estimate the model using the Simulated Method of Moments, and 

target the differences in the survival curve as the objective function. (see Appendix Section 1 

for more details).   

The red line in Figure 4 plots log mortality rates predicted by the model for the 1902 men 

cohort with parameters estimated on data through age 65.  The blue line plots observed log 

mortality rates. The gap between the lines after age 65 is the treatment effect estimator for this 

cohort: 

𝐴𝐴𝐴𝐴𝐴𝐴�𝑆𝑆𝑆𝑆𝑆𝑆(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) ≡ 𝑞𝑞�𝑐𝑐,𝑎𝑎 − 𝑞𝑞�𝑐𝑐,𝑎𝑎
𝑆𝑆𝑆𝑆𝑆𝑆(∞) .   (5) 

The validity of this approach depends on the correct specification of the model and the ability 

to estimate its parameters using pre-Medicare data. The model embeds several strong 

assumptions, such as constant parameters and no optimization.15 Nevertheless, it successfully 

fits patterns of mortality for a wide range of populations and replicates the observed effects of 

 
14 Today, people on the Social Security Disability Insurance program, or who have end-stage renal disease, or who 
are widows or widowers of a Medicare-eligible spouse can get Medicare before they turn 65. None of these 
provisions were in place until 1973, when the 1908 cohort aged into Medicare. 
15 Optimizing models with these features are well understood, but without detailed data on health, incomes, and 
investments they are not estimable (e.g. Khwaja 2010). 
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high SES or of temporary or permanent shocks to health occurring at some point in the lifetime 

(Lleras-Muney and Moreau 2022). 

We also face several limitations estimating the model’s parameters. The most practical 

challenge is that the model requires data on complete life tables from birth to age 65, which 

means we can only use the SSA life tables for cohorts born in 1900 and after. Moreover, shocks 

earlier in life, such as the 1918 flu, can affect mortality trajectories later in life, biasing our 

model-based counterfactuals. We account for the flu in our estimation, but as Lleras-Muney 

and Moreau (2022) discuss, these shocks are generally difficult to model. The objective 

function is also poorly behaved, so the estimates are sensitive to initial guesses. To address 

this, we first estimate the model for the 1900 birth cohort repeatedly until we can no longer 

improve the fit. Then we use these parameter values as initial guesses for subsequent cohorts. 

We assess the model’s fit by estimating a linear trend through the difference between observed 

and predicted log mortality at ages 55-64 (see Tables A2a and A2b, which also report mean 

squared error). If the model estimates are on average unbiased then the predicted and observed 

mortality will be very similar up to age 65 and the trend term will be statistically insignificant. 

We find that the model fits well for men born between 1900 and 1909, but poorly for younger 

cohorts of men and for all cohorts of women. We therefore only report structural results for 

men born before 1909 and we do not present estimates for women. 

V.B.2 Interrupted Time-Series Design 

Our second approach is an interrupted time-series design based on a functional form 

assumption on untreated log mortality rates, 𝑞𝑞𝑐𝑐,𝑎𝑎(∞). 

Assumption GM (Gompertz-Makeham). Linearity of log untreated mortality rates 

For all cohorts, c, and ages between 𝑎𝑎𝑐𝑐0 and 𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎, the log of untreated period mortality rates 

is linear in age: 

𝑞𝑞𝑐𝑐,𝑎𝑎(∞) = 𝛼𝛼𝑐𝑐 + 𝛽𝛽𝑐𝑐(𝑎𝑎 − 𝑎𝑎𝑐𝑐0)                (6) 

This standard Gompertz-Makeham model is also implied by the theoretical model and 

supported by extensive empirical evidence (e.g., Chetty et al. 2016) since Gompertz first 

observed it as an empirical regularity in 1825. This regularity however holds only among adults 

of a certain age as can be seen for the 1902 birth cohort in Figure 4.  

Under assumptions NA and GM, 𝛼𝛼𝑐𝑐 and 𝛽𝛽𝑐𝑐 can be obtained by regressing 𝑞𝑞𝑐𝑐,𝑎𝑎 on a constant 

and age for each cohort using pre-Medicare ages 𝑎𝑎 ∈ [𝑎𝑎𝑐𝑐0,𝑔𝑔𝑎𝑎]. Denoting the coefficients from 
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this regression by 𝛼𝛼�𝑐𝑐 and 𝛽𝛽�𝑐𝑐  leads to the following estimand for counterfactual mortality rates 

at post-Medicare ages: 𝛼𝛼�𝑐𝑐 + 𝛽𝛽�𝑐𝑐(𝑎𝑎 − 𝑎𝑎𝑐𝑐0) . The dashed lines in Figure 5 plot these linear 

estimates of counterfactual mortality rates and the solid lines plot observed log mortality rates.  

This motivates an interrupted time-series (ITS) plug-in estimator that uses our sample mortality 

rates 𝑞𝑞�𝑐𝑐,𝑎𝑎to estimate 𝛼𝛼�𝑐𝑐 and 𝛽𝛽�𝑐𝑐 (denoted 𝛼𝛼�𝑐𝑐 and 𝛽̂𝛽𝑐𝑐) and then constructs 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎): 

𝐴𝐴𝐴𝐴𝐴𝐴�𝐼𝐼𝐼𝐼𝐼𝐼(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) ≡ 𝑞𝑞�𝑐𝑐,𝑎𝑎 − 𝛼𝛼�𝑐𝑐 − 𝛽̂𝛽𝑐𝑐(𝑎𝑎 − 𝑎𝑎𝑐𝑐0)           (7) 

These are labeled as the difference between the solid grey line (observed) and dashed blue line 

(counterfactual) in Figure 5. This estimator yields 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) parameters until age 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚, 

the age at which mortality is no longer linear. 

Unlike the model-based estimates that use the full history of mortality to identify the structural 

parameters, the ITS approach relies only on the assumption GM during ages close to Medicare 

eligibility. Key to this approach then is to determine the range of ages, 𝑎𝑎𝑐𝑐0 to 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,  during 

which log-linearity is appropriate. We set 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 = 90, similar to Chetty et al. (2016) and 

Fletcher et al. (2022), which avoids bias from non-linearities in log mortality and 

mismeasurement of age at death for the oldest old.  

The choice of 𝑎𝑎𝑐𝑐0 is less clear and likely differs by cohort and sex (as can be seen in Figures 

A.3a and A.3b). We use our 20% training sample to fit a series of two-slope models to log 

mortality rates before Medicare eligibility, selecting 𝑎𝑎𝑐𝑐0 as the best fitting trend-break using 

five-fold cross-validation (Card, Mas, and Rothstein 2008).16 We do this separately for six 

cohort groups (1885-1889, 1890-1894, 1895-1899, 1900-1905, 1906-1909, and 1910-1915). 

Figure A.4 plots the selected 𝑎𝑎𝑐𝑐0 over birth cohorts  (see Appendix Section 2 for more details).  

V.B.3 Difference-in-Differences Design 

Our third approach is a difference-in-differences (DiD) design based on an assumption about 

trends 𝑞𝑞𝑐𝑐,𝑎𝑎(∞).17 

 
16 To gauge the fit of a linear model for estimated Gompertz curves, we regress the log of mortality on age for 
each birth cohort by sex and report the corresponding 𝑅𝑅2 for pre-trends, which we define as trends in log mortality 
from the age in 1940 to the age before Medicare eligibility age. Specifically, for birth cohort 𝑐𝑐 ∈ (1885,1915), 
the age window for pre-trend is: 𝑚𝑚𝑚𝑚𝑚𝑚(40, 1940 − 𝑐𝑐), 𝑚𝑚𝑚𝑚𝑚𝑚(65,1966 − 𝑐𝑐) − 1. Figure A.5 shows that a linear 
model fits the Gompertz curves almost perfectly for males with an 𝑅𝑅2 over 0.98 for all included birth cohorts. The 
model fit for females is also excellent for old cohorts 1885-1887 (𝑅𝑅2=0.99) but gradually decreases across cohorts 
to 0.945 for the 1904 cohort, then increases to over 0.98 for later cohorts 1910-1915.  
17 Assumption PT is also a proportional hazards assumption because it is equivalent to a constant the ratio of age-
specific mortality rates between cohort 𝑐𝑐 and the average comparison cohort (Deaner and Ku 2024).  
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Assumption PT. Parallel Trends across cohorts and ages 

The change in untreated log mortality rates for cohort c between ages 𝐺𝐺𝑎𝑎(𝑐𝑐) = 𝑔𝑔𝑎𝑎  and 𝑎𝑎 

equals the change in log untreated mortality rates between the same ages for older cohorts, ℓ, 

treated after age 𝑎𝑎 and between 1 and (𝑘𝑘 − 1) years after age 𝐺𝐺𝑎𝑎(𝑐𝑐); that is, for all ℓ such 

that 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎,𝑔𝑔𝑎𝑎} < 𝐺𝐺𝑎𝑎(ℓ) < 𝑔𝑔𝑎𝑎 + 𝑘𝑘: 

                                     𝑞𝑞𝑐𝑐,𝑎𝑎(∞) − 𝑞𝑞𝑐𝑐,𝑔𝑔𝑎𝑎−1(∞) = 𝑞𝑞ℓ,𝑎𝑎(∞) − 𝑞𝑞ℓ,𝑔𝑔𝑎𝑎−1(∞) .                                     (8)  

Assumption PT involves a cohort treated at age 𝑔𝑔𝑎𝑎 and comparison cohorts treated “later.” In 

our case, later means “at a later age”, so the comparison cohorts are older.18 A larger value of 

𝑘𝑘 means a larger yet older comparison group that identifies parameters at older ages (Figure 

A.6).19 Assumption PT says  that these cohorts’ Gompertz curves would have been parallel 

through age 𝑎𝑎 in the absence of Medicare.  

Figure 6 illustrates how the PT assumption identifies counterfactual mortality changes in a 

simple case where we compare two cohorts at a time. To identify 𝐴𝐴𝐴𝐴𝐴𝐴(1967,65,65), which is 

the effect of Medicare on mortality for the 1902 cohort in the year they entered Medicare (i.e., 

at age 65 in 1967), we compare their change in mortality between ages 64 and 65 to the change 

in mortality for older cohorts at the same ages. In Figure 6, we show this for a comparison 

cohort born in 1900 (ages 64 and 65 in 1964 and 1965) or in 1891 (ages 64 and 65 in 1955 and 

1956). Identification of 𝐴𝐴𝐴𝐴𝐴𝐴(1967,65,74), the effect for the 1902 cohort at age 74, works the 

same way but requires a comparison cohort born at least ten years earlier (in this case, 1891).  

Under assumptions NA and PT, a simple DiD estimand identifies 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎). Plugging in 

sample analogues yields the following DiD estimator (where ℓ is defined in Assumption PT 

and the weights 𝑤𝑤ℓ reflect the relative size of the comparison cohorts measured at age 𝑔𝑔𝑎𝑎 − 1): 

𝐴𝐴𝐴𝐴𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) = �𝑞𝑞�𝑐𝑐,𝑎𝑎 − 𝑞𝑞�𝑐𝑐,𝑔𝑔𝑎𝑎−1� −�𝑤𝑤ℓ�𝑞𝑞�ℓ,𝑎𝑎 − 𝑞𝑞�ℓ,𝑔𝑔𝑎𝑎−1� 
ℓ

      (9) 

This is a version of the Callaway and Sant’Anna (2021)’s estimator, which we implement by 

adding the choice of 𝑘𝑘 to the Stata command csdid (Rios-Avila, Sant'Anna, and Callaway 

 
18  The max (𝑎𝑎,𝑔𝑔𝑎𝑎)  notation ensures that all ( 𝑘𝑘 − 1 ) comparison cohorts contribute to the pre-treatment 
falsification tests when 𝑎𝑎 < 𝑔𝑔𝑎𝑎. 
19 Assumption PT defines comparison cohorts as those whose Medicare age comes after 𝐺𝐺𝑎𝑎(𝑐𝑐), which means that 
for cohorts treated later and by definition at age 65, the only available comparison cohorts are those born in up to 
(𝑘𝑘 − 1) years before 1901. Therefore, the cohort gap between treatment and comparison units grows as we look 
at younger cohorts in this design. 
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2023), defining cohorts as the cross-sectional unit, age as the time variable, and 𝐺𝐺𝑎𝑎(𝐶𝐶𝑖𝑖) as the 

treatment variable.  

Intuitively assumption PT is more likely to be satisfied for cohorts that are closer together in 

age than for cohorts that are not. For example, WWI and the 1918 flu had different mortality 

effects across cohorts may lead to non-parallel slopes in log mortality thereafter (Lleras-Muney 

and Moreau 2022). To select 𝑘𝑘, we use  our 20% training sample and estimate event-study 

parameters 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘(𝑒𝑒) using comparison cohorts defined by values of 𝑘𝑘 between 7 and 15. We 

first measure the estimated pre-trends and find that the linear pre-trend does not vary strongly 

with k; it is always insignificantly positive (Figure A.7 panel A). We then consider robustness 

to parallel trends violations using the smoothness restriction method of Rambachan and Roth 

(2023). For each 𝑘𝑘, we find the maximum bias that still allows us to reject 𝐻𝐻0: 𝐴𝐴𝐴𝐴𝑇𝑇𝑘𝑘(5) = 0. 

Here we find clearer guidance: 𝑘𝑘 = 12 allows us to reject this null under the largest worst-case 

bias (Figure A.7 panel B). See Appendix Section 3 for further details. 

V.B.4 Estimating aggregated parameters 

We report aggregates of the estimated 𝐴𝐴𝐴𝐴𝐴𝐴�(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) parameters as described in section V.A. 

Both the event-study (𝐴𝐴𝐴𝐴𝐴𝐴�(𝑒𝑒) ) and the cohort-specific intercept (𝛿𝛿(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) ) and slope 

(𝜃𝜃�(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎)) aggregations are linear combinations of the building block parameters and thus 

simple to calculate using post-estimation commands.  

We use life table methods described in Appendix Section 4, to estimate 𝐴𝐴𝐴𝐴𝐴𝐴�𝐿𝐿𝐿𝐿(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎) 

parameters. Because the structural model identifies counterfactuals at all ages, we have 

estimates 𝐴𝐴𝐴𝐴𝐴𝐴�𝑆𝑆𝑆𝑆𝑆𝑆(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) for each cohort’s entire post-Medicare lifespan. An advantage of 

the model is that it captures commonly observed non-linearities in later life mortality; these are 

particularly important for accurately estimating effects on life expectancy.20 When calculating 

life expectancy effects based on the ITS and DiD designs, which we only estimate within an 

age window around Medicare, we assume that the estimated linear trend across ages in each 

cohort’s 𝐴𝐴𝐴𝐴𝐴𝐴�(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) parameters continue until age 90 and that counterfactual mortality 

evolves in parallel to observed mortality thereafter (Figures A.8 and A.9). We use cohort 

specific changes in intercept and slope of log mortality to compute the implied effect on life 

 
20 In particular, there is a debate about whether log mortality rates continue to be linear in very old age or instead 
decelerate (e.g., Feehan 2018). In this model mortality rates decelerate in old age due to selection (individuals 
who have had many positive shocks survive to the oldest ages). Some argue that this deceleration is due to poor 
and sparse data quality among the oldest old (e.g., Gavrilov and Gavrilova 2019) but there is much debate about 
whether this is the case (e.g., Alvarez et al. 2021). 
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expectancy at age 65 separately for each cohort. We assume everyone dies by age 115 to close 

the life table. To obtain the 95% confidence intervals of ITS and DID implied effects on life 

expectancy at age 65, we bootstrap the estimates with 1000 resamples.  

VI. THE EFFECT OF MEDICARE ON MORTALITY AND LIFE EXPECTANCY 

VI.A Average results  

Figure 7 presents event-study estimates of Medicare’s causal effects on mortality.  For men, 

we find clear evidence that Medicare reduced log mortality rates (panel A). The pre-period 

falsification tests are only significant in one case, never larger than 0.05, and display no obvious 

trend, even up to 10 years prior to Medicare in the model-based estimates. After gaining 

Medicare eligibility, however, the results from all three approaches are negative, clearly 

distinguishable from zero after two years, and growing in magnitude linearly over time. After 

ten years, we find that Medicare reduced age-specific mortality rates for white men by about 

14 percent (𝐴𝐴𝐴𝐴𝐴𝐴�(9) ≈ −0.15), an estimate that is remarkably similar across designs. The 

structural estimates show that these declines level off after ten years, but remain large 

(𝐴𝐴𝐴𝐴𝐴𝐴�𝑆𝑆𝑆𝑆(20) ≈ −0.14) 20 years after cohorts gain Medicare. This result highlights the value 

of the model since it would be hard to predict this pattern based on the reduced form results 

alone.    

A simple trend break, at least over ten years, summarizes these event-study results well. The 

slope change is -0.013 (s.e. = 0.001) for ITS and -0.019 (s.e. = 0.003) for DiD (Table A.3). 

The ITS estimates also have a small intercept shift (-0.021, s.e. = 0.006), but the DiD estimates 

do not (0.011, s.e. = 0.011). Although the structural model can only be estimated for a subset 

of cohorts (1900-1909 cohorts), the results are similar (-0.017 change in the slope and -0.012 

change in the intercept). Through the lens of the model, this pattern suggests that, for men, 

Medicare is equivalent to increasing health investments or lowering depreciation/aging rates.  

These ITS and DiD estimates translate into an average gain in life expectancy for men of 0.87-

1.20 years (Table 2). Our confidence intervals rule out changes smaller than 0.72 years, a 

meaningfully large increase in longevity. The structural model suggests gains of about 0.97 

years for the 1900-1909 cohorts. The (unweighted) average of the effects for the same cohorts 

is about 1.5 years using both ITS and DiD. The difference likely come from the fact that we 

compute the ITS and DiD life expectancy estimates by assuming that the effects on mortality 
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would continue to grow linearly until age 90, whereas the model suggests that the effects 

plateau after 10 years.    

The aggregate event-study estimates for women shown in Figure 7b are not as conclusive as  

the men’s results. The ITS estimates are essentially zero in the first five years and turn positive 

and significant thereafter. The DiD estimates are also insignificant in the first six years and 

then become negative, but at the ten year mark they are less than half as large as the results for 

men. The ITS and DiD point estimates suggest that pre-Medicare mortality rates were roughly 

linear and comparable across cohorts, but they are imprecise (the standard errors of these 

estimates are much larger than those for men) and cannot rule out potentially meaningful bias 

(in either direction). Recall that we cannot present results using the structural model because 

the model does a poor job at fitting mortality among the elderly in the decade prior to age 65.  

The inconclusive effects for women are also apparent in their estimated intercept and slope 

changes (Table A.3). The ITS estimator yields statistically significant declines in the intercept 

and increases in the slope, whereas the DiD estimator does not indicate a change in the intercept 

but does show a statistically significant decline in the slope. The two methods, therefore, give 

wildly different estimates for women’s life expectancy: ranging from a significant increase of 

0.87 years using the DiD estimates to a significant decline of 0.80 years using ITS (Table 2).  

VI.B Results by birth cohort 

Figure 8 plots intercept and slope estimates (𝜃𝜃�𝑐𝑐 and 𝛿𝛿𝑐𝑐) for each cohort by sex. For men, the 

cohort-specific results are generally quite close to the aggregate results. For cohorts born before 

1908 or so, both reduced-form methods estimate a precise slope change of about 2 percent per 

year, while most intercept estimates are statistically insignificant. The estimates that are 

available from the structural model are typically indistinguishable from those we obtain from 

the ITS approach. This similarity across cohorts is striking because the older cohorts are the 

only cohorts in US history who first received Medicare at ages other than 65, some as late as 

age 81. The results in Figure 8 show that Medicare affected the path of log mortality similarly 

for these groups.  

We observe a significant change in the results for the most recent birth cohorts of men. First, 

the estimated intercepts become negative and statistically significant in the ITS design for 

cohorts born 1908 and later. We also see that the ITS slopes become insignificant for cohorts 

born after 1910 and turn positive for the 1914 and 1915 cohorts. The cohort-by-cohort checks 
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of the identification strategy suggest this is occurring because our identification assumptions 

fail for these later cohorts (see Figures A.11-A.15, and Appendix Section 5). First, the 

structural model cannot match the pre-Medicare mortality rates for these cohorts because there 

are non-linearities occurring before age 65 for these younger cohorts, with mortality rates 

increasing more slowly than linearity would predict. When we estimate the ITS and DiD 

models by birth cohort groups we indeed find that there are significant pre-trends for younger 

cohorts, but not for other subsets of cohorts (Figure A.14). These patterns are especially 

pronounced for the 1914 and 1915 birth cohorts, whose coverage in our Family Tree sample 

(which ended in 2023) was not yet complete due to the practice of requiring additional death 

verification for anyone who would not yet be 110 years old. Our final results will use complete 

data for these cohorts.21 Excluding the 1909-1915 birth cohorts, our average effects on life 

expectancy are similar to those presented in Table 2 at around one year of life using both 

methods (Table A.4). These reduced form results for the cohort born after 1908 or so align 

with the failure of the structural model to match mortality in old ages prior to age 65 and suggest 

that there are other factors affecting mortality prior to Medicare that the model cannot match 

because we have not accounted for them, and which also result in a failure of the reduced form 

identification approaches.  

Figure 9 shows the estimated effects on LE at age 65 (𝐴𝐴𝐴𝐴𝐴𝐴�𝐿𝐿𝐿𝐿(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎)) by cohort. The results 

are very consistent across designs for men. Medicare leads to small gains in LE for men born 

in 1885, but its effects grow for younger cohorts. The estimates peak at around 2 years of life 

for the 1906 cohort (ITS) and the 1906-1908 birth cohorts (DiD). They also peak at 1.30 years 

of life for the 1906-1907 cohorts in the structural model. Because the effects on mortality rates 

are similar across most cohorts in all designs, as Figure 8 shows, this phase-in pattern comes 

from the differing length of time that cohorts spent on Medicare. Cohorts that became eligible 

earlier in life experienced lower mortality rates for longer, which generated greater gains in 

lifespan. The average effect on life expectancy for cohorts obtaining Medicare in 1966 after 

 
21 There are two major policy changes that could also explain these results. The first is the change in 1972 to 
Medicare which made individuals under the age of 65 with long term disabilities or with end stage renal disease 
eligible for the program starting in 1973. The second is the Clean Air Act of 1970, which started operating in 1971 
and lead to significant reductions in air pollution. Because these changes occurred after 1966 and might have 
affected individuals prior to age 65, these two changes might explain why our identification assumptions fail for 
the most recent cohorts of men since they could result in a decline in the age profile of mortality even before age 
65 leading us to underestimate the impact of Medicare. They could also lower mortality rates after age 65 which 
might inflate the estimates of the effects of Medicare. 
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age 65 (for cohorts born before 1901) is around 0.68. If we focus on the 1901-1909 birth 

cohorts, which got Medicare at age 65 (similar to today) and for which the identification 

assumptions appear to be satisfied, then we obtain an average gain of 1.55 in the reduced form 

approaches and about 1 in the structural model. This highlights that conclusions based on 

mortality rate changes cannot necessarily be applied to life expectancy.   

For women, Figures 8 and 9 show that both the ITS and the DiD approaches suggest null 

effects on the life expectancy of women from older cohorts but conflicting and mostly 

statistically insignificant effects on life expectancy for younger birth cohorts. We discuss these 

inconclusive results for women in section VII.  

VI.C The effects of Medicare by education and income 

Figure 10 plots the event-study estimates by sex and for the three education groups separately: 

those with less than elementary school (0-7 years of schooling), those who graduated from 

elementary school but not high school (8-11 years of schooling), and high school graduates 

(12+ years of schooling). These correspond to 24, 47 and 29% of men in the population, and 

21, 46 and 33% of women in the population (Table 2). For men, the ITS and DiD event-study 

estimates by education are almost identical to the aggregate results, especially in the short run. 

By year 9, however, the ATT estimate is about -0.2 for men (or larger) with 0-7 years of 

schooling, but about -0.12 for men with 12 or more years of schooling. Thus over the longer 

run the mortality impacts appear larger for less educated men. For women, we find mixed 

results. Women with 0-7 years of school have the largest mortality reductions using ITS but 

while negative the effets are statistically insignificant. Using DiD all groups appear to have 

declines but the effects are not larger for women with less education.  

Figure 11 presents event-study estimates by income terciles based on household income in 

1940. The event studies show relatively little heterogeneity by income for both methods and 

both sexes, though unexpectedly the group in the middle income group appears to have the 

largest effects except for men in the DiD design. This may come from the fact that income in 

our data is measured 26 years before Medicare begins and may therefore be a poor proxy for 

lifetime income (see Haider and Solon 2006) or income at the time we estimate treatment 

effects. Our coarse cut of the income distribution and use of cohort-specific ranks, however, 

should mitigate this measurement error.  
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These heterogeneity estimates are interesting for at least two reasons. First, it is not obvious 

whether Medicare should have larger or smaller health effects on higher-income or more-

educated people. Higher-SES groups might gain less from Medicare because they were more 

likely to have insurance before 1966 (Epstein and Murray 1967) and were in better health 

(Braveman et al. 2010; Kitagawa and Hauser 1973). On the other hand, conditional on having 

insurance high-SES people visit specialists at higher rates (Braveman et al. 2010; Dunlop, 

Coyte, and McIsaac 2000) and may be more likely to take advantage of medical advances 

(Glied and Lleras-Muney 2008).22 We do not find strong heterogeneity along these margins. 

Second, the subgroup estimates relax our identification assumptions. Differential mortality 

rates by education can generate compositional changes that vary with age, making assumptions 

GM or PT fail even if they hold within education or income groups.23 The stratified analyses 

in Figures 10 and 11 nonparametrically control for these trends, and the results do not change. 

A subtle issue arises when translating these mortality effects into life expectancy gains: groups 

who see the largest decreases in mortality rates may not see the largest increases in life 

expectancy if they have elevated mortality rates (Dahl et al. 2024).24 Table 2 documents 

estimated effects on life expectancy that decrease with education levels, but by less than the 

mortality effects do. We find that Medicare increased life expectancy on average by about 1-

1.2 years for men with less than a primary education, but by between 0.67 (ITS) and 0.85 (DiD) 

years for high school graduates. These differences are not statistically significant from each 

other, so on net the effects on life expectancy at age 65 do not appear to be meaningfully higher 

for the less educated despite their larger declines in mortality rates.  

 
22  The model reflects this ambiguity as well. Ex-ante it is not clear that groups with initially high levels of 
investment or low levels of depreciation would benefit more or less in terms of life expectancy. More people in 
high-initial-health groups reach 65, but the survivors from a low-initial-health group are very positively selected, 
making it unclear which surviving group is healthier and would benefit more from Medicare. 
23 Educational levels in our data increased substantially—the percent of men (women) with 12+ years of schooling 
increased from 19.1% (20.6%) for the 1885 birth cohort to 44.6% (49.2%) for the 1915 cohort, consistent with 
prior studies (Goldin 1998; Lleras-Muney 2005). Education is also associated with lower mortality rates in these 
cohorts (Goldin 1998; Lleras-Muney 2005; Lleras-Muney, Price, and Yue 2022; Yue et al. 2023). 
24 To gain intuition about this result consider the following example. Suppose that mortality rates  𝜆𝜆 are constant 
at every age and the time until death follows an exponential distribution so that life expectancy is given by 1/ 𝜆𝜆. 
Suppose that in period 1 group A has a mortality rate 𝜆𝜆𝑎𝑎 = 0.1  and group B has a mortality rate of 𝜆𝜆𝑏𝑏 = 0.2, so 
that life expectancy is equal to 10 for group A and 5 and group B. Suppose now that mortality falls, more so for 
group B which has the initially higher rates. In the second period 𝜆𝜆𝑎𝑎 = 0.06 and  𝜆𝜆𝑏𝑏 = 0.1, so the decline in 
mortality is larger for B in absolute and relative terms (the decline for B is of 0.1 or 50%, whereas for A the decline 
is only of 0.04 or 40%). But the life expectancy of A is now 16.6 and that of B is 10. Group A sees an increase of 
6.6 years whereas B only sees an increase of 5 years despite their larger mortality declines. This occurs because 
the mortality rates for B are higher than A’s in period 2. 
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For women, the results are again different across methods. The ITS only estimates positive 

gains for the lowest education group but these are statistically insignificant. The effects for the 

other two groups are negative. So using ITS the effects are more positive for the lowest 

education group but none of the effects are positive. The DiD on the other hand estimates larger 

effects for the most educated group, but the effects are positive and not statistically significantly 

different from each other.  

Table 2 also shows that men from low-income and high-income households have very similar 

estimated life expectancy effects, with the largest estimates for middle income men but the 

differences across income groups are not statistically significant. This pattern is similar for 

women in the DiD design but in the ITS design all the estimates are negative. Moreover we 

cannot reject the null that all the estimates are identical.  

VI.D Spillover estimates at younger ages 

After just 18 months, Medicare accounted for over 10 percent of personal health expenditures 

in the US (CMS, 2025). Medicare’s introduction was also associated with increases in hospital 

entry, capacity, technology adoption (Finkelstein 2007), and medical device patenting 

(Clemens and Olsen 2021). To the extent that these changes also affected mortality rates, our 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) estimates include spillovers. A key interpretation question, then, is to what 

extent the estimates reported above reflect spillovers versus the direct effect of Medicare 

coverage? In addition, the 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑎𝑎) estimates for cohorts that gained Medicare after 

1966 (1902-1915) would also be biased by spillovers because they use at least some post-1966 

data to estimate counterfactuals. Spillovers, therefore, also affect the validity of our designs. 

While we cannot separately identify spillovers and direct effects using our treated cohorts, our 

historical context allows us to estimate spillover effects on younger cohorts before they turn 65 

and age into Medicare themselves. Appendix Section 6 motivates ITS and DiD designs that 

identify spillover effects by looking for mortality changes in 1966 younger for cohorts who 

gained Medicare later (𝐺𝐺𝑡𝑡(𝑐𝑐) > 1966).   

Figure 12 plots event-study estimates from both approaches, neither of which finds any 

evidence that Medicare’s spillovers affected mortality for the near elderly. The point estimates 

are small and never statistically significant for up to 7 years after Medicare. Even in our 20% 

sample, we can rule out an average spillover effect on log mortality before age 65 of more than 

-0.035 using DiD.  
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These findings are consistent with the evidence in Figure 1 that neither insurance coverage nor 

hospital use increased substantially right after Medicare’s introduction among younger people. 

Of course, Medicare’s most important spillovers may have taken time to materialize or may 

have been larger for the over-65 population if insurance itself was necessary to access hospital 

capital investments or new technologies. Nevertheless, Medicare’s documented spillovers on 

the health system do tend to appear within just a few years (Finkelstein 2007). Moreover, 

Figure 1 shows that around 80 percent of people ages 55-64 had private insurance in 1968, 

suggesting that the population for whom we estimate spillovers had ways to pay for these new 

services. Therefore, early effects of Medicare on the health care system appear not to have had 

important mortality effects on younger people. This supports an interpretation of our main 

estimates as direct effects of Medicare’s coverage, though we cannot rule out spillovers that 

occurred only within the elderly population. 

 

VI.E Assessing the validity of the identification assumptions 

We find clear evidence that Medicare’s introduction reduced men’s mortality rates gradually 

over at least ten years, inconclusive evidence about its effects on women, and little evidence 

that these operated through spillover effects, at least when measured among slightly younger 

people. Given the structure of our estimators, however, changes to (untreated) mortality rates 

around 1966 are an important threat to internal validity. In fact, our spillover estimates already 

suggest that there are not large calendar time effects in untreated mortality rates. The results in 

Figure 12 do not just reflect spillovers, they also capture differential changes in untreated 

mortality rates that arise in 1966 (see the assumptions in Appendix Section 6.ii). The null 

findings in Figure 12 fail to produce evidence of important time shocks.25 

A different set of concerns is that the passage of Medicare coincided with economic, policy, or 

environmental changes that affected the over 65 population differently than the under-65 

population. We now discuss the largest and most likely such shocks. 

Anticipation. All estimation approaches rely on the assumption that mortality does not respond 

prior to becoming eligible.  This seems reasonable for the cohorts that were first treated in 1966 

because the passage of Medicare was difficult and unanticipated, as discussed in Section II. 

Cohorts born in 1902 and after, though, clearly knew about Medicare and might, for example, 

 
25 It is possible that the results in Figure 12 come from offsetting spillover effects and time shocks, although we 
view this as unlikely.  
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delay non-urgent care until age 65.26 We generate evidence on this using a t-test of the equality 

of the average DiD estimate in the two years prior to reaching Medicare age 

(𝐴𝐴𝐴𝐴𝐴𝐴�𝐷𝐷𝐷𝐷𝐷𝐷(𝑔𝑔𝑡𝑡,𝑔𝑔𝑎𝑎,𝑔𝑔𝑎𝑎 − 2)) for the 1902-1915 cohorts versus the 1885-1901 cohorts. We do not 

detect a difference in pre-Medicare mortality effects for cohorts that could anticipate coverage 

(The difference for men is 0.03, 95% CI: -0.01, 0.07).27 We also tried omitting the two years 

before Medicare eligibility from the calculation of the Gompertz slope in our ITS design and 

obtained nearly identical results (Figure A.17). Thus we can rule out short term anticipatory 

effects.28 

Medicaid. Medicaid was created at the same time as Medicare, and covered the same basic 

health services as well as nursing home care and, in most states, drugs (De Lew 1995).  

Medicaid receipt also increased at age 65 because welfare benefits, which were the statutory 

basis of Medicaid eligibility, began at that age for older people. By 1976, about 14% of people 

65 and older received Medicaid (US Census Bureau 1992). For almost all of them, Medicare 

was the first payer, so Medicaid provided incremental benefits, including paying Medicare’s 

deductibles, cost sharing, and Part B premiums, and covering nursing homes and drugs. 

Several pieces of evidence, however, suggest that Medicaid cannot seriously confound our 

mortality estimates. Most importantly, Medicaid was far too small in the over-65 population, 

especially relative to Medicare, for its incremental coverage to account for our findings. 

Appendix Section 7 shows that for Medicaid to explain our effects entirely, its marginal 

services and financial protection would have to reduce mortality by at least 41%. This is 10 

times as large as recent estimates of the causal effect of losing subsidized drug coverage 

through Medicaid among elderly people who retain Medicare (Roberts et al. 2025). Using a 4 

percent effect size, our event-study estimate at time 5 would change from -0.084 to -0.76; not 

a statistically significant difference.29  

 
26  Card, Dobkin and Maestas (2008) find that elective procedures rise at age 65 particularly for previously 
uninsured individuals consistent with patients delaying care. Similarly, Decker (2005) finds that mammography 
use increases sharply at age 65. Clemens and Gottlieb (2014) document that physicians’ financial incentives within 
the Medicare program also strongly influence the provision of elective services. 
27 We computed the difference as 𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒=−2,𝑔𝑔𝑎𝑎==65 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒=−2,𝑔𝑔𝑡𝑡=1966 and bootstrapped it with 1000 resamples to 
obtain the 95% bias corrected confidence interval. 
28 We cannot rule out however that the most recent cohorts changed their savings and work behavior many years 
before becoming eligible. 
29 It is also 4 times as large as the effect on the treated of Medicare part D from Huh and Reif (2017). We conducted 
similar calculations assuming that Medicaid’s causal effects came from the 2.5% of people over 65 who use 
Medicaid-funded long-term care. If Medicaid caused all of them to use the nursing home, and their untreated 
mortality rates were ten times as high as the non-institutionalized population (approximately 35% per year, relative 
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Further, our estimates themselves do not suggest an important role for Medicaid. The similarity 

of our effects on mortality across the income distribution contrasts with Medicaid’s income-

based targeting. In 1976, for example, 21% of seniors in the bottom third of the income 

distribution received Medicaid, compared to 10% of seniors in the top two-thirds (U.S. Census 

Bureau. 2006). We also estimate nearly identical ATT parameters for groups of states that 

introduced Medicaid in different years: 1966, 1967-1969, or 1970. Figure A.18 plots event-

study estimates using ITS and DiD for each state group. Even though no seniors in the 1970 

states received Medicaid for the first 5 event times, we find that Medicare’s mortality effect is 

the same as it is in the states where the two programs corresponded in time. 

Income trends. Real median incomes rose by more than half during the 1950s, a period when 

much of our study population was still working. Congress also raised Social Security benefits 

several times during the late 1960s and early 1970s, which affected pension income for all our 

cohorts. Appendix Figure A.19 uses Census and CPS data to quantify within-cohort income 

trends, which may also influence the mortality patterns we leverage in our design. Real median 

family income grew across cohorts at essentially every age, but every cohort experienced a 

substantial reduction in income in their mid-60s, when many workers retired.  

Could our results be attributed to these trends instead of Medicare? The literature on causal 

effects of income on mortality suggests not. The most closely related research comes from a 

reduction in Social Security benefits for the 1917 cohort. Snyder and Evans (2006) find that 

this reform lowered mortality by about two percent. 30 The key mechanism for this effect 

appears to be that lower benefits increased labor supply which may have kept “seniors 

connected to the community and reduce[d] social isolation” (pg 493). Subsequent research on 

early Social Security concludes the same (Fitzpatrick and Moore 2018). Applying these results 

to observed trends in labor force nonparticipation within cohorts, which we plot in Appendix 

 
to about 3.5% for the over-65 population at this time), then Medicaid’s nursing home care would have had to 
reduce their mortality by 36% (-0.45 log points) to explain our main findings. Neither these conditions nor this 
effect size is plausible. Many Medicaid nursing home residents were previously institutionalized in state hospitals 
or private nursing homes, so Medicaid’s causal effect on nursing home use must be smaller than 2.5 percent. 
Second, one study found that in 1976 the mortality rate of nursing home residents was at most 2.5 times the rate 
in the rest of the population. Finally, recent evidence using a random “judge” assignment design in the Netherlands 
finds no average effect of nursing home admission on mortality (Bakx et al. 2020).  
30  Handwerker (2011), however, argues that this contrast reflects cross-cohort mortality trends, while 
Noghanibehambari and Fletcher (2025) conclude that lower Social Security benefits raise mortality at later ages. 
Schwandt (2018) documents that plausibly random stock market fluctuations lead to relatively higher survival 
rates for respondents in the Health and Retirement Study who hold more stock.  
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Figure A.20, implies that income and retirement trends should generate a fairly large increase 

in mortality later in life—the opposite of our results. 

Our data also fail to support retirement as a source of bias. Most directly, we find no evidence 

of changes in the slope of mortality at age 65 among older cohorts who received Medicare later 

in life. Using the 1885-1896 cohorts (𝑔𝑔𝑎𝑎 ∈ [70,81]), the estimated trend-break in log mortality 

for men is just 0.0029 (s.e.=0.0057); small even relative to the pre-65 Gompertz slope of 0.078. 

If retirement strongly reduced mortality (the opposite direction of much of the related literature) 

we would expect two patterns in our results. Estimates for older cohorts who gained Medicare 

later should be smaller than estimates for younger cohorts for whom Medicare often coincides 

with retirement (Rust and Phelan 1997). The DiD estimates, which difference out mortality 

changes for older cohorts around retirement, should also be substantially smaller than the ITS 

and structural estimates which estimate counterfactual mortality using only pre-retirement 

information. In fact, we fail to find support for either of these predictions.31  

VI.F Combining short term reduced form estimates with structural estimates   

The previous discussion rules out many specific alternative interpretations for our findings, but 

the longer the evaluation period, the more likely it is that other changes in the environment 

begin to matter. For example, our estimates could reflect general medical progress in the 1960-

2000 period. Previous research concludes that about one-third of the declines in cardiovascular 

mortality during the second half of the 20th century were due to innovations such as the 

dissemination of knowledge about the harms of smoking, the diffusion of hypertension and 

later cholesterol drugs, and the development of invasive treatments such as bypass surgery and 

angioplasty (Cutler, Landrum, and Stewart 2009; Cutler and Meara 2003).32 Our estimates will 

be biased if these changes affect our treated cohorts but not the older data we use to construct 

counterfactuals (though it may well be that health insurance and new technologies 

complemented each other during this period since health insurance increased access to these 

 
31 The prosperity of the 1950s could generate bias if rising income levels affect later-life changes in Gompertz 
slopes. Our model shows that this can occur if rising income protects cohorts from health-related deaths (which 
cause Gompertz curves to slope up) until increasingly older ages. Again, this is the opposite sign of our main 
results and is thus not a plausible alternative explanation. Simulations also show that while higher health 
investments shift the Gompertz curve once health-related deaths begin to bite, this does not alter its slope. Vital 
Statistics data also fail to show big changes in external cause deaths across these cohorts. In 1950, for example, 
the external-cause share of deaths for 50–54-year-olds (1896-1900 cohorts) was 11.5% and in 1958 (1905-1908 
cohorts) it was 10.9%, even though median family income at these ages grew by about 30% across these cohorts. 

32 It is unclear whether we would want to “net out” these effects, though, because these innovations might not 
have diffused in the absence of Medicare (Clemens and Olsen 2021; Finkelstein 2007). 
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novel but expensive technologies, in which case our estimates are not biased but would differ 

in environments with lower medical innovation). 

To overcome this issue, we follow the approach of Deryugina and Reif (2023) to calculate 

longer-run effects based only on short-run causal estimates. First, we use the 5 or 10 year short-

term reduced form estimates to estimate the change in the model parameters that rationalizes 

the declines in mortality implied by these estimates. We assume that these short-term estimates 

are not contaminated by other aggregate shocks. If this is the case, then the changes in the 

model parameters are unbiased and can be used to predict the effect of the program. So, in a 

second step, we use these estimated parameter changes to predict the effect of Medicare on life 

expectancy. We do this by computing what life expectancy would be if the parameters remained 

at their pre-Medicare level, and alternatively, if Medicare changed the parameters at age 65 in 

exactly the way that is needed to match the reduced form evidence. We match the reduced form 

estimates using the three parameters that can result in the type of declines that the reduced form 

produces, namely  𝐼𝐼 , 𝛼𝛼 , or 𝛿𝛿 . We only conduct this exercise for men for whom we have 

consistent reduced form results and reliable structural model estimates.  

Table 3 shows that all parameters can fit the reduced form end point similarly well, though  𝛿𝛿 

or 𝛼𝛼 appear to generate the best fit for both time horizons, suggesting that declines in the rate 

of aging best characterize the effects of Medicare. The implied changes in life expectancy from 

changing each parameter are similar: they hover around 0.6 years of life if we match the 5-year 

end point, and about 1.7 year of life if we match the 10-year end point.   

Additionally, note that the 5-year estimates are smaller than the 10-year estimates. If we want 

to be conservative and avoid attributing to Medicare the effects of other determinants of elderly 

mortality that arose after the early 1970s, then the 5-year estimates are the most trustworthy. 

Nevertheless, even these conservative estimates are significant. Life expectancy at age 65 rose 

by about 1.5 years for men across the cohorts we study. These computations suggest that 

Medicare can explain at least one-third of the gains across all 31 cohorts.  

VII. DISCUSSION 

Our findings suggest that, on average, Medicare reduced men’s mortality rates by 15 percent 

after ten years and their life expectancy at age 65 by one year. The results for women, however, 

are inconclusive. This section discusses the plausibility and interpretation of the magnitude and 

pattern of these estimates.  
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VII.A Discussing sex differences 

Our results for men are consistent across empirical approaches, but do not generally even have 

the same sign for women. Several commonly cited reasons for different results by sex cannot 

account for this. Our Family Tree data contain maiden names, so we measure women’s 

mortality well (see Table 1 and Figure 3). Insurance rates and hospital use also respond 

similarly to Medicare for men and for women (see Figure 1), so the differences do not arise 

from differential effects on medical care use. What could explain these patterns? 

Our data do show one clear difference between the men and women in our sample: cohort life 

expectancy for women over 65 was already rising prior to the introduction of Medicare. This 

is shown in Figure 3 and contrasts sharply with the case of men. Black et al. (2023) show 

similar patterns for life expectancy at age 25. Thus some factor prior to age 65 clearly benefited 

the cohorts of women we study. Unless these patterns were entirely due to health endowments, 

this fact could explain why our structural model fails: it cannot fit the profile of mortality well 

unless the environment is stable, or the environmental changes, such as the 1918 flu, are 

explicitly accounted for. Unfortunately, it is unclear why the life expectancy of women rose 

for these cohorts (e.g., Goldin and Lleras-Muney 2019), and it is thus unclear how to account 

for these changes in estimation.33 Note, however, that these changes would tend to bias the SM 

and ITS approaches more than DiD to the extent that the cross-cohort comparisons successfully 

capture these hard-to-model trends. This is consistent with the closer concordance between 

men’s and women’s results using DiD. 

Alternatively, women’s mortality trends could be linked to the experiences of their male family 

members, who are almost always older and less healthy husbands. For example, if wives’ 

mortality starts to fall when their husbands gain Medicare eligibility, our model fit would 

suffer, and the pre-Medicare slope used to form the ITS counterfactual would be too flat. To 

investigate this, we re-estimate the model for women who were never married.34 Our results 

are similar for this group (Figure A.21), ruling out this as an explanation for our results. 

Women are also much more likely than men to experience the death of a spouse between the 

 
33 One possibility is that the spread of sulfa drugs and the enormous reduction in the health risks associated with 
childbirth changed adult mortality profiles for women specifically. The rise in women’s life expectancy, however, 
also occurs for cohorts that were already too old to benefit from these innovations. 
34 Our Family Tree data allows us to retrieve all the spouses of a woman. I define those without a spouse recorded 
in the Family Tree as “never married.” We also find a similar null effect for those reported as “single or not married” 
from the 1940 census.  
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ages of 45 and 75 (our critical window): 53% of women in our data become widows, compared 

to only 20% of men. Widowhood is associated with a significant temporary increase in 

mortality, which doctors often refer to as “broken heart syndrome” (Ennis and Majid 2021; 

Moon et al. 2011). We observe this in our data (Figure A.22). We do find that accounting for 

this widowhood effect significantly lowers the positive ITS estimates among married women 

for whom we observe the age at death of their spouses (Figure A.23). If the distribution of the 

age at which women become widows is stable across cohorts, then the DiD estimates are less 

susceptible to this bias, as shown in Figure A.24.  

Based on this discussion, we might want to conclude that only the DiD estimates for women 

are reliable. They are less susceptible to biases from unmodeled shocks or non-linearities that 

are common across cohorts, they are robust to corrections for some of these shocks, and they 

qualitatively match the results for men. These estimates are still substantially smaller than the 

results for men. In fact, this is consistent with research showing that many new medical 

technologies available during this period were not particularly effective for women. As Thomas 

and Braus (1998) noted, “Until a decade ago, men were the model subjects in most funded 

biomedical studies (…). It was then assumed that whatever the findings, the results would hold 

true in women. Since then, it has become apparent that this generalization was incorrect in 

many situations.” The Hypertension Detection and Follow-Up study, a 10,500-person clinical 

trial of anti-hypertensive drugs conducted in the 1970s, found reductions in five-year mortality 

of between 15 and 28 percent for men and Black women, but no effect on white women 

(Hypertension Detection Follow-up Program Cooperative Group 1979).  

In sum, we cannot fully explain why our results for women are consistent with the men’s results 

using DiD but not ITS. The health and lifespan of women appear to have been improving earlier 

in the century for reasons that are not fully understood and are therefore difficult to address. 

But the historical evidence also suggests that the smaller benefits of Medicare may have been 

because innovation in cardiovascular disease was much less beneficial for women than men. 

We thus cannot draw strong conclusions about how Medicare affected women. 

VII.B Magnitudes on the treated population 

An important piece of evidence on the validity of reduced-form effects of health insurance 

reforms on mortality involves the size of the population whose “treatment status”, typically 

defined by insurance coverage or health care consumption, was causally affected by the policy. 
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Since Medicare cannot more than eliminate mortality, comparing our estimates to the size of a 

“complier” population provides a natural plausibility check (see Goodman-Bacon 2018).35  

Yet measuring the size of such a complier population is hard for two reasons. First, Medicare 

shifted people from uninsured to insured, from privately insured to publicly insured, and even 

led some people to hold both public and private policies. 36  We cannot estimate separate 

treatment effects for each type of complier (Kline and Walters 2016), and so must make 

additional assumptions to justify evaluating the plausibility of our effect sizes by appealing to 

a single complier population. Second, Medicare may have induced complex changes to 

treatment (i.e., insurance) paths, and neither our demographic nor potential outcomes model 

takes a stand on how one’s insurance history affects current health (e.g., Goldin, Lurie, and 

McCubbin 2021). Thus, measuring the size of the complier population and the intensity of 

treatment over longer time horizons depends on further assumptions about the model for 

outcomes.  

Two important features of our context suggest a relatively large “insurance complier” 

population. First, no one lost Medicare; once seniors were exposed to Medicare, they were 

always treated with public hospital insurance at least. Second, given the structure of insurance 

markets at the time, it is reasonable to assume that once someone lost insurance, they were 

never again treated with private insurance. This is consistent with the steady decline in the pre-

Medicare age profile of insurance in 1963 (Figure 1).  

Assuming that without Medicare, insurance rates for the elderly would have changed in parallel 

with those for younger people, then we can use Figure 1 to construct several “first stage” 

measures. We first adjust the post-Medicare insurance rates among seniors to account for 

underreporting. Gindi and Cohen (2012) report that Medicare reporting among respondents 65 

and older in the 2005 NHIS has a false positive rate of 2.8% and a false negative rate of 89%, 

which implies a relatively constant Medicare participation rate in our data of about 96%. Next, 

 
35 This is an extreme criterion. Many effect sizes that are smaller than a 100% reduction in mortality are often 
considered unreasonably large. In fact, our model suggests that even Medicare eliminated health-related morality 
(which is itself an implausible claim), accidents would still cause deaths.  
36 Here we discuss insurance as “the” treatment, but one could also view health care use or the use of specific 
effective health care services as the treatment that Medicare shifted. In fact, evidence from randomized trials 
suggests our estimates are plausible. Heart disease was the main cause of death among elderly men above in 1965. 
Reductions in hypertension and cholesterol and more aggressive interventions for heart attack patients have been 
estimated to increase life expectancy for men by several years (Cutler, Landrum, and Stewart 2009; Wright and 
Weinstein 1998). Medicare could easily have increased the use of these kinds of clinically effective services. 
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we first compute the change in insurance rates between 1963 and 1968 at each age and subtract 

the average change for people 55-64. This yields estimated insurance changes between 22 (age 

65) and 64 (age 84) percentage points.  

If compliance means that Medicare ever caused one to be insured instead of uninsured, the size 

of the complier population at age 75 is just the effect on age 75 insurance: 39.8 percentage 

points. Using this to scale our estimate 𝐴𝐴𝐴𝐴𝐴𝐴�(9) yields a causal effect on compliers of -35% (-

0.14/0.398). This would be smaller for older cohorts, however, who gained more insurance but 

had similar treatment effects. On the other hand, if the underlying treatment concept is the 

change in the number of years of insurance, then it is appropriate to sum the insurance effects 

across ages, which yields a gain of 3.3 years by age 75 (but more than twice that, 8.4 years, by 

age 85). This suggests an effect per year of insurance of -4.5 percent. Both of these effect sizes 

are in line with estimates from Medicaid’s introduction, which reduced mortality among treated 

children by 31 percent (Goodman-Bacon 2018) and cumulative mortality into adulthood by 

about between 6 and 8 percent per year of childhood coverage (Goodman-Bacon 2021). 

VII.C Cost-benefit calculations  

The fact that we estimate benefits from Medicare does not necessarily imply that the program 

was worth it, because, as noted earlier, it is very expensive. To better assess this, we now 

estimate the cost of the program per life saved and compare it to estimates of the statistical 

value of a year of life. The gains we estimate are large enough to justify expenditures per 

enrollee at the time. The estimated annual cost per enrollee in 1970 was around $368 (about 

$3,000 in today’s dollars) (Buntin et al. 2003). If men enrolled in Medicare at age 65 lived for 

15 years after age 65 (14 years + 1 gained), the total cost per enrollee’s lifetime and of the 

additioan life-year gained is about $45,000. This is much lower than a central estimate of the 

statistical value of a year of life  ($150,000; Keller et al. 2021). Today’s cost per beneficiary is 

substantially larger however, at about $15,000, making the cost of an extension of a year of life 

close to $225,000.  

However, the cost of these life extensions is larger than the cost of similar life extensions 

resulting from programs that benefit younger populations, such as cash transfers to poor 

families, youth training programs, or Medicaid.37 On the other hand, the comparable cost from 

 
37Aizer et al. (2016) find that giving about 30-50% of FPL in cash to poor families for a median duration of 3 
years increased the LE of boys by 1.5 years. The cost of that was up to 50% of the FPL per year. The FPL today 
for a family of 5 is $37,650, so the total cost was $56,475 per family, or ~14,120 per kid (4 kids and a mom, 
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directly providing health care through Community Health Centers was $54,000 (Bailey and 

Goodman-Bacon 2015). 

VII.E Comparison with other studies of Medicare 

Our approach and results contrast in several ways with two closely related studies that compare 

changes in age-specific mortality across calendar time for people over 65 versus under 65. 

Finkelstein and McKnight (2008; FM) find little evidence that log mortality for people aged 

65-74 fell after 1966 relative to mortality for people aged 55-64. 38  Chay, Kim and 

Swaminathan (2010; CKS), on the other hand, report clear evidence that mortality rates (and 

log mortality rates) for people aged 65-69 fell relative to those for people aged 60-64.  

There are two key distinctions between our analysis and the ones in FM and CKS. The first lies 

in how we treat cohorts. In a time series of age-specific mortality rates, time and cohort effects 

are collinear, so shifts in mortality profiles due to pre-Medicare factors like early life conditions 

or the changes in lifetime income (see Appendix Figure A.19) are a potential source of bias. 

In contrast, our design only uses within-cohort mortality changes to identify Medicare’s effects, 

which eliminates cohort effects. (Of course, in our set-up, age and time are collinear, but, as 

discussed above, Figure 12 does not suggest that this biases our findings.) 

Our analysis also has an important measurement advantage: we observe exact denominators 

for our mortality rates. Both FM and CKS use highly accurate Vital Statistics data on deaths, 

but must construct population denominators. FM apply a cubic interpolation to decennial 

population counts by state and age from 1950-1980, while CKS combine intercensal (1950s) 

and provisional (1960s and after) estimates for the whole country. Appendix Figures A.25 and 

 
assuming all money spent on kids). Thus, the cost of 1 year life extension was $9,412. Aizer et al. (2024) find that 
training men ages 19-25 for about 1 year during the great depression in the CCC program increased lifespan for 
about 1 year. The cost of the program estimated to be about $23,000. Thus, the estimated cost of a 1-year life 
extension was $23,000. Goodman-Bacon (2021) finds that the cost to gain one per quality-adjusted life year 
through childhood Medicaid coverage in the 1960s was about $9,000.  
38 FM also use a special tabulation of 1963 insurance rates by 11 sub-regions in the NHIS. They compare changes 
in age-specific mortality rates before and after 1966 in sub-regions that had different health insurance coverage 
rates in 1963 and find that mortality actually rose slightly in areas where Medicare led to larger coverage gains. 
There are two major limitations to interpreting this contrast as a causal effect of Medicare. First, DiD designs with 
a continuous treatment variable (and no untreated units) require a kind of treatment effect homogeneity to identify 
an interpretable causal parameter (Callaway, Goodman-Bacon, and Sant'Anna 2024). If regional health insurance 
coverage was correlated with factors that potentially mediate the effect of Medicare on mortality, this assumption 
need not hold. Consistent with this, CKS show that elderly hospital utilization grew by the same amount in the 
North (a low insurance gain region) and the South (a high insurance gain region) after 1966, suggesting that 
mortality effects should be comparable as well. Second, the 1963 NHIS sample design was only intended to be 
representative at the region level (and separately by urban residence). Random measurement error in sub-regional 
uninsurance rates will attenuate estimates from a continuous DiD design. 
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A.26 replicate both findings using Vital Statistics data as well as our data. Within about 5 years 

of Medicare’s passage, our data as well as the results in FM and CKS suggest a reduction in 

young-elderly mortality of about 3 percent. Those figures also show, however, that Vital 

Statistics based estimates are extremely sensitive to the measurement of population 

denominators. Using linearly interpolated denominators, for instance, eliminates the null 

longer-run results that led FM to conclude that Medicare was ineffective. Using intercensal 

estimates almost entirely eliminates the relative trend break in log mortality documented in 

CKS. Since the choice and measurement of denominators is not obvious, a key strength of our 

approach is that this choice is not necessary.  

VIII. CONCLUSIONS 

This paper uses a large and novel dataset that measures lifetime mortality for a wide range of 

cohorts and includes individual economic and demographic characteristics measured in 1940. 

We use three pre-specified research designs—one based on a structural model (Lleras-Muney 

and Moreau 2022), an ITS design, and a DiD design—to estimate dynamic within-cohort causal 

effects of the introduction of Medicare on log-mortality rates. For white men, all three 

approaches show clear evidence that Medicare reduced mortality rates across essentially all 

cohorts born between 1885 and 1905, and that they generated cohort-level changes in life 

expectancy of up to 1.5 years.  

We do not find the same to be true for women, for whom the estimates are more unstable. 

Whether this is the result of identification failures or not is unclear. However, it is also true that 

medical understanding of how to treat cardiovascular disease for women was inadequate in the 

1960s perhaps explaining why we fail to find effects. These large sex differences necessitate 

further investigation, but they are not unique to our study.    

What are the implications of our study for today? It is difficult to apply our estimates to current 

populations because the technology available today and coverage for people under 65 is 

different from what was available when our study population lived and died. However, we can 

use our results to simulate gains from Medicare for today’s cohort under different scenarios. 

Raising the age of Medicare’s eligibility has been considered as a means to lower Medicare 

expenditures. We estimate that an increase in the age of eligibility to age 75 would result in a 

loss of 0.3 to 1 years of life, relative to gaining Medicare at age 65 (Table 3). Because Medicare 

is popular, others have proposed lowering the age of eligibility instead, making the program 

less targeted to the old. We estimate that lowering eligibility to age 55 would instead lead to 
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life expectancy gains at age 55 of about 0.4 to 1.4 year higher than provision at age 65. Future 

work could use our estimates to conduct alternative counterfactuals to assess whether these 

changes would be desirable.  

Future work should also investigate effects on health. There are a number of valuable health 

interventions that improve the quality of life without extending life, particularly among older 

populations (e.g., Kavalieratos et al. 2016). These include palliative care, chronic pain 

management, hearing and vision aids hip replacement, and perhaps mental health interventions. 

Our estimates do not quantify these important benefits. With estimates of the health impacts, 

our estimates of life expectancy benefits, and existing estimates of the financial benefits of 

Medicare, a comprehensive assessment of Medicare would be possible.  
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Table 1: Characteristics of white individuals linked to the 1940 full-count census  

  
20% Census-Tree data  

(N=3,697,163) 
1940 full-count census 

(N=57,416,201) 
  w/o IPW w/ IPW Percent or Mean 
Birth cohorts based on 1940 census 

   

  1883-1884 0.12% 0.40% 3.76% 
  1885-1889 10.56% 11.15% 10.91% 
  1890-1894 15.00% 13.72% 13.09% 
  1895-1899 15.85% 14.23% 13.51% 
  1900-1904 17.29% 15.89% 14.95% 
  1905-1909 17.90% 17.13% 15.75% 
  1910-1914 20.95% 23.15% 20.91% 
  1915-1917 2.32% 4.32% 7.12% 
Sex 

   

  Male 53.69% 50.38% 50.21% 
  Female 46.31% 49.62% 49.79% 
Hispanics 

   

  Not Hispanic 99.36% 98.73% 98.49% 
  Mexican 0.45% 0.94% 1.07% 
  Puerto Rican 0.01% 0.04% 0.09% 
  Cuban 0.01% 0.03% 0.04% 
  Other 0.17% 0.26% 0.31% 
Regions of residence in 1940 

   

  Northeast 17.80% 28.09% 30.50% 
  Midwest 37.25% 33.86% 32.74% 
  South 30.94% 25.92% 25.01% 
  West 14.01% 12.13% 11.74% 
Regions of birth 

   

  Northeast 16.87% 24.42% 24.27% 
  Midwest 39.42% 33.54% 31.86% 
  South 32.30% 26.83% 25.69% 
  West 6.72% 5.36% 5.06% 
  US or outlying areas 0.02% 0.06% 0.12% 
  Abroad 4.67% 9.80% 13.00% 
Marital status 

   

  Married, spouse present 84.19% 75.35% 72.29% 
  Married, spouse absent 1.81% 3.18% 3.75% 
  Separated 0.00% 0.00% 0.00% 
  Divorced 1.16% 1.82% 1.87% 
  Widowed 2.04% 3.21% 3.94% 
  Never married/single 10.80% 16.44% 18.14% 
Veteran status 

   

  N/A 97.30% 97.46% 97.49% 
  Not a veteran 1.14% 1.09% 1.11% 
  Veteran 0.32% 0.28% 0.25% 
  Unknown 1.24% 1.17% 1.15% 
Educational level 

   

  0-7 22.25% 22.29% 23.59% 
  8-11 45.94% 44.62% 44.45% 
  12+ 29.89% 31.01% 29.60% 
  Missing 1.91% 2.08% 2.36% 
Years of schooling (SE) 9.35 (3.25) 9.33 (3.40) 9.16 (3.46) 

Household total annual income in 1940 US dollars (SE) 
1295.45  

(1876.93) 
1531.80 

(2687.66) 
1533.34  

(2491.17) 
Number of own family members in household (SE) 4.34 (2.05) 3.92 (2.03) 3.82 (2.06) 
Occupational income score in 1940 (SE) 14.96 (14.59) 15.16 (14.56) 14.99 (14.40) 

Notes: The inverse probability weights (IPW) are estimated using a robit model that predicts a match as a 
function of the following as covariates: female dummy, years of schooling, age, 6 marital status dummies, 
number of children, labor force participation dummy, occupation dummies, occupation income scores, wage and 
salary income, veteran status (yes, no, unknown), place of birth, and state of residence in 1940. We estimated 
the model separately for men and women.  
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Table 2: Estimates of Medicare’s average treatment effect on life expectancy at age 65 
overall, by education, by income in 1940, and by cohort  

 Sample Size Life expectancy at age 65 ITS DID 
Panel A. Men     
All Men 1,985,048 14.43 0.87 1.20 
   (0.72, 1.00) (0.91, 1.49) 
Years of Schooling     

  0-7 465,407 13.60 1.02 1.18 
   (0.79, 1.26) (0.78, 1.65) 
  8-11 922,526 14.14 0.86 0.99 
   (0.66, 1.05) (0.64, 1.37) 
  12+ 557,896 15.43 0.67 0.85 

   (0.38, 1.03) (0.20, 1.56) 
1940 Household Income Tertiles     

  Low income 661,949 14.39 0.67 1.25 
   (0.42, 0.92) (0.86, 1.77) 
  Middle income 661,470 14.19 1.03 1.29 
   (0.77, 1.25) (0.79, 1.86) 
  High income 661,629 14.67 0.85 1.07 

   (0.60, 1.09) (0.62, 1.56) 
Cohort Groups     

  1885-1890 314,523 13.92 0.29 0.30 
   (0.22, 0.38) (-0.04, 0.69) 
  1891-1900 638,480 13.94 0.64 0.86 
   (0.50, 0.79) (0.70, 1.03) 
  1901-1908 552,895 14.38 1.48 1.54 
   (1.21, 1.75) (1.12, 1.97) 
  1909-1915 479,150 15.06 0.62 1.37 

   (0.30, 0.95) (0.92, 1.87) 
Panel B. Women     
All Women 1,712,115 18.83 -0.80 0.87 
   (-1.11, -0.52) (0.35, 1.39) 
Years of Schooling     

  0-7 357,273 17.49 0.21 0.80 
   (-0.34, 0.69) (0.12, 1.55) 
  8-11 776,058 18.63 -0.75 0.81 
   (-1.23, -0.37) (0.16, 1.45) 
  12+ 547,351 19.81 -1.61 1.30 

   (-2.31, -1.10) (0.15, 2.47) 
1940 Household Income Tertiles     

  Low income 572,842 18.69 -0.78 0.49 
   (-1.33, -0.35) (-0.28, 1.30) 
  Middle income 575,573 18.61 -0.26 1.37 
   (-0.75, 0.20) (0.51, 2.23) 
  High income 563,700 19.12 -1.29 0.69 

   (-1.88, -0.86) (-0.15, 1.45) 
Cohort Groups     

  1885-1890 256,629 17.33 -0.06 0.33 
   (-0.24, 0.12) (-0.32, 0.99) 
  1891-1900 537,968 18.42 -0.60 0.24 
   (-0.96, -0.31) (-0.06, 0.53) 
  1901-1908 494,735 19.18 -0.85 1.27 
   (-1.28, -0.42) (0.54, 2.02) 
  1909-1915 422,783 19.39 -1.13 1.21 

   (-1.69, -0.64) (0.52, 1.93) 
Notes: This table reports the estimated life expectancy gains associated with gaining access to Medicare. The 
Appendix contains the details of our computations. All estimates are produced using the Census Tree data. In 
parentheses are bias-corrected 95% confidence intervals produced by bootstrapping with 1,000 resamples. Mean 
Life expectancy at age 65 denotes weighted average cohort-specific life expectancy at age 65 using the number 
of people survived to Medicare eligibility age as weights. 
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Table 3: Structural Model Mechanisms and Counterfactuals  
Using Men 1900-1909 

  

Parameter 
before 

Medicare 
  

Parameter 
after 

Medicare 
  

% change 
  

Average 
MSE 

(Survival) 
  

 
Implied 
gain in 
LE65 
from 

matching 
RF at age 

65  
  

Predicted 
gain in 
LE55 
from 

providing 
Medicare 
at age 55 

  

Predicted 
loss in 
LE65 
from 

providing 
Medicare 
at age 75  

  
    

    
Panel A: Matching DiD endpoint, 5 years     
I 0.138 0.151 9.42% 0.0514 0.574 0.48 -0.37 
𝛿𝛿 0.00096 0.00093 -3.13% 0.0372 0.595 0.37 -0.36 
α 1.386 1.377 -0.65% 0.0472 0.654 0.38 -0.39 

 
       

Panel B: Matching DiD endpoint, 10 years     
I 0.138 0.173 25.36% 3.7547 1.701 1.4 -1.12 
𝛿𝛿 0.00096 0.00087 -9.38% 3.0362 1.76 1.08 -1.07 
α 1.386 1.363 -1.66% 2.8942 1.755 1.02 -1.05 
        

 
Notes: these estimates use our (pooled) event-study estimates for the 1900-1909 male cohorts as the reduced form 
estimates. Column (1) reports the average value of the model parameter when calibrating the model up to age 65. 
Column (2) reports the average value of the parameter when it is allowed to vary to match the reduced form effect 
of Medicare. Column (3) reports the percent change from (1) to (2). Column (4) reports fit on the survival curve. 
Column (5) reports the estimated effect of Medicare on LE65 in the model. This is computed by comparing the 
LE with the change in the parameters at age 65 with the prediction of the model when the parameter is allowed to 
change at age 65. Column (6) reports the marginal gain to LE55 from providing Medicare at age 55, where the 
predicted change in LE55 is computed by comparing a model where the relevant parameter is changed at age 65 
to match the reduced form treatment effect to a model where the same parameter change occurs at age 55. Column 
(7) reports the marginal loss to LE65 of delaying Medicare eligibility to age 75 in an equivalent exercise.
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Figure 1: Hospital insurance coverage and hospital nights before and after Medicare’s 
introduction  

 
a. Health Insurance Coverage 

 
b. Hospital Nights 

 
Notes: The figure shows hospital insurance rate and the average number of nights in hospital in the past 12 months 
for whites by sex. We use data from the National Health Interview Survey (NHIS), a nationally representative 
survey of the noninstitutionalized population. Specifically, we use the 1963 and 1968 NHIS that ask if one 
individual had hospital insurance coverage for Panels A and B. The number of nights in hospital in the past 12 
months was asked in 1963-1969 NHIS. We use the 1963-1969 NHIS data from IPUMS that cleaned the hospital 
nights variable for Panels C and D; we exclude 1966 in the analysis because Medicare was introduced in the 
middle of 1966. Survey weights are applied to make the estimates representative of the U.S. population.    
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Figure 2: Simulated changes of Gompertz curves after permanent unanticipated shocks 
at age 65 

a. log of mortality with and without parameter changes at age 65 

 
b. Effects of parameter changes at age 65 on log mortality 

 
Notes: The figures show simulated results based on Lleras-Muney and Moreau (2022)’s unified model for cohort 
mortality, with parameter values for the baseline model given by I = 0.4, δ = 0.0006, σ = 1, α = 1.7, μ0 = 0.9, and 
an adolescent accident shock 𝜅𝜅 = 0.008. The threshold for dying is set at 0. In the top panel, the solid blue line 
shows the evolution of (the natural logarithm of) mortality rates by age for the baseline population and the dashed 
red line shows shifted Gompertz curves after permanent shocks are simulated at age 65: I is increased by 10% 
(investment increase), the variance σ is decreased to 0.6 (variance decrease),  accidents are decreased to 0.004 
(accident decrease), the depreciation rate δ is lowered by 5% (depreciation decrease), and finally the threshold is 
lowered from 0 to -1 (threshold decrease). In the bottom panel (panel b) we show the implied evolution of the 
gaps in (natural) logs, which are given by the distance between the solid blue line and the dashed red line in panel 
a.  
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Figure 3: The expected age at death conditional on survival to age 65.   

 
Notes: Shown are life expectancy at age 65 (𝑒𝑒𝑒𝑒65) for men and women. The orange hollow squares represent 
𝑒𝑒𝑒𝑒65 constructed from a 20% random sample of whites born 1885-1915 from our Census Tree data. Using the 
Census Tree sample, we compute age-specific mortality rate using the inverse probability weights, separately by 
sex, and birth cohort. The blue circles denote 𝑒𝑒𝑒𝑒65 from the Social Security Administration (SSA) cohort life 
tables. The SSA, available only for cohorts born in 1900 or later, include all races and are not disaggregated by 
race. The green triangles are 𝑒𝑒𝑒𝑒65 computed based on the U.S. cohort death rates for all races from the Human 
Mortality Database (HMD).     
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Figure 4: Identification of Medicare’s effect on one cohort’s log mortality rates in the 
structural design - men born in 1902  

 

Notes: This figure demonstrate how the model can be used for identification using the Social Security 
Administration cohort tables starting at birth. The y-axis shows the natural log of mortality. The blue line shows 
these rates for the 1902 cohort of men in the Social Security Administration data. The model estimates are 
produced in two steps. We first estimate the model using data up to age 65. We then project mortality rates beyond 
age 65 using the estimated parameters (solid red line). The estimated parameters for this cohort and other cohorts 
we study are presented in Table A2.  
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Figure 5: Identification of Medicare’s effect on one cohort’s log mortality rates in the 
interrupted time series design - men born in 1902   

 
Notes: Analytic data include a 20% random sample of whites born 1885-1915 from our Census Tree data that 
links the 1940 full-count census to Family Tree. Using the sample, we compute age-specific mortality rate using 
the inverse probability weights, separately by sex and birth cohort. The figures show the log mortality (Gompertz 
curve) for the 1902 cohort for white men. The blue solid line is a linear fit of log mortality against age over 10 
years prior to Medicare eligibility age (pre-trend). The blue dashed line is a linear project of the pre-trend of log 
mortality after Medicare eligibility to age 90, representing the counterfactual without Medicare’s introduction. 
The red solid line represents the linear fit of the post-Medicare trend in log mortality from Medicare eligibility 
age to age 90.          
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Figure 6: Identification of Medicare’s effect on one cohort’s log mortality rates in the 
difference-in-differences design - men born in 1902   

 
Notes: This figure highlights the estimator for 𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑡𝑡 ,𝑔𝑔𝑎𝑎 , 𝑎𝑎) for the 1902 men cohort as an example. We describe 
the treatment effect for the Medicare eligibility year (𝑔𝑔𝑡𝑡 = 1967) and 9 years after the introduction. This effect is 
identified by comparing the change in the (log) mortality rate before (C) and after becoming eligible for Medicare 
(D) (at ages 64 and 65) for the 1902 cohort, to the change for each of the 1891-1900 cohorts in the previous year 
prior to becoming eligible for Medicare; note as explained in the text, we restricted the comparisons to nearby 
cohorts. The identifying assumption is parallel trends between pairs of cohorts and pairs of ages (𝑃𝑃𝑃𝑃(𝑐𝑐, 𝑎𝑎)), 
namely that the change in mortality for the 1891-1900 cohort between ages 64 and 65 (e.g., B-A, or F-E) serves 
as a counterfactual for the change in mortality for the 1902 cohort because they would have evolved in parallel if 
the 1902 cohort had not been treated. This assumption can be partially tested by checking whether the mortality 
rates of the two cohorts were in fact parallel prior to age 65. Similarly, the treatment effect for the 1902 cohort 9 
years after Medicare use (and only use) the 1891 cohort as the comparison group. The implied estimate of the 
effect of Medicare 9 years after its introduction year for the 1902 cohort is illustrated in this figure as (G-C)-(H-
E), which -0.2 for men.  
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Figure 7: Estimates of Medicare’s average treatment effect on log mortality rates by 
event-age 

 

 
 

Notes: The figure plots the estimates of 𝐴𝐴𝐴𝐴𝐴𝐴(𝑒𝑒) parameters from equation (3) for men and women using both the 
ITS and DiD designs using a 20% random sample of whites born 1885-1915 from our Census Tree data that links 
the 1940 full-count census to Family Tree. The blue circles, orange squares, and green triangles represent event-
study estimates from the interrupted time series (ITS), difference-in-differences (DiD), and structural model (SM), 
respectively. The green triangle estimates are derived from the Social Security Administration (SSA) cohort life 
tables, which are available only for the 1900 and later cohorts. The 𝐴𝐴𝐴𝐴𝐴𝐴(𝑒𝑒) estimates from the SM design are 
only computed from men born 1900-1909, for which our structural model provides a good fit using the SSA life 
tables.   
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Figure 8: Estimates of Medicare’s average treatment effect on the intercept and slope of 
log mortality rates by cohort 

 
 A. Changes in slopes 

 
 

B. Changes in intercepts  

 
Notes: We use three approaches to estimate changes in slopes and levels of log mortality, after Medicare started 
in 1966, by sex and birth cohort using three different methods. The blue circle (ITS approach) and orange square 
(DiD approach) estimates are from a 20% random sample of whites born 1885-1915 from our Census Tree data 
that links the 1940 full-count census to Family Tree. The green triangle estimates are derived from the Social 
Security Administration (SSA) cohort life tables, which are available only for the 1900 and later cohorts. We 
compute the slope and intercept estimates only for men born 1900-1909, for which our structural model provides 
a good fit using the SSA life tables.  
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Figure 9: Estimates of Medicare’s average treatment effect on life expectancy at age 65 
by cohort  

 
Notes: Shown are the implied effects of Medicare on life expectancy at age 65 based on our ITS, DiD and 
structural model (SM) estimation approaches by sex, and birth cohort. The blue (circle) and orange (square) 
estimates are from a 20% random sample of whites born 1885-1915 from our Census Tree data that links the 1940 
full-count census to Family Tree. We use a bootstrapping approach with 1,000 resamples to obtain the 95% 
confidence intervals for our analysis using Census Tree microdata. The green triangle estimates correspond to the 
structural model estimates the Social Security Administration (SSA) cohort life tables, which are available only 
for the 1900 and later cohorts. The SM estimates are only estimated for men born 1900-1909, for which our 
structural model provides a good fit using the SSA life tables.  
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Figure 10: Estimates of Medicare’s average treatment effect on log mortality rates by 
event-age and education group 

 

 
Notes: Shown are estimated event-study estimates from the ITS and DiD approaches, stratified by sex and 
educational group. We use a 20% random sample of whites born 1885-1915 from our Census Tree data that links 
the 1940 full-count census to Family Tree. We use a bootstrapping approach with 1,000 resamples to obtain the 
95% confidence intervals for the ITS event-study estimates using Census Tree microdata. We obtain years of 
schooling from the 1940 census and categorize respondents into four groups: 0-7 years of schooling, 8-11 years 
of schooling, 12 or more years of schooling, and missing years of schooling.  
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Figure 11: Estimates of Medicare’s average treatment effect on log mortality rates by 
event-age and income group 

 

 
Notes: Shown are estimated event-study estimates from the ITS and DiD approaches, stratified by sex and income 
group. We use a 20% random sample of whites born 1885-1915 from our Census Tree data that links the 1940 
full-count census to Family Tree. We use a bootstrapping approach with 1,000 resamples to obtain the 95% 
confidence intervals for the ITS event-study estimates using Census Tree microdata. We obtain household income 
from the 1940 census and categorize respondents into three income tertiles by sex: low income, middle income, 
and high income. 
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Figure 12: Estimates of Medicare’s spillover effects and time shocks in 1966 for 1908-
1915 cohorts  

 

 
Notes: In this falsification test, we use aggregated log mortality data by sex and cohort but restrict to the pre-
Medicare ages. We use 1966 as the treatment year and focus on the 1908-1915 cohorts who were aged 51-58 in 
1966 and whom we can observe for at least 7 years prior to their gaining Medicare themselves. The figures show 
event study estimates from a DiD and ITS designs described in Appendix Section 6.  
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