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1 Introduction

Simultaneous confidence bands are used in applied work to visualize estimation uncertainty
for vector-valued parameters. A confidence band is a rectangular confidence set, i.e., Carte-
sian product of intervals. This feature makes it straight-forward to plot the band regardless
of the dimension of the parameter of interest, in contrast to confidence ellipsoids. Unlike
pointwise confidence bands, simultaneous confidence bands cover the entire true parameter
vector with a pre-specified probability. Hence, simultaneous confidence bands are useful
whenever researchers wish to make comparisons across different parameters of interest, such
as different points at which a function is evaluated. A confidence band is often more graphi-
cally intuitive and versatile than a joint hypothesis test, especially when the researcher does
not know the audience’s precise hypotheses of interest.

While many simultaneous confidence bands are used in practice, there exists little theory
to select among these, at least outside the linear regression model. We review the literature
below. Bands commonly encountered in applied work include Bonferroni, Šidák, projection,
and sup-t bands. These bands can differ substantially in terms of their width and coverage
properties. However, existing decision theoretic analyses of confidence bands do not apply to
nonlinear econometric models. In some applications, such as confidence band construction
for impulse response functions in VAR analysis, practitioners have hithero relied exclusively
on simulation evidence to select among bands.

We fill this gap by providing analytical comparisons of popular simultaneous confidence
bands in a generally applicable nonlinear econometric framework. Our goal is to compare
bands in terms of performance measures that are relevant to practitioners: the ease of
computation, the simultaneous coverage probability, and the average width of the confidence
bands. We make three contributions to the literature.

First, we analytically compare the relative widths of popular confidence bands under
weak assumptions, by showing that many bands fall in a one-parameter class. Bands in
the one-parameter class equal a natural point estimator plus/minus a constant c times the
vector of pointwise standard errors. This class contains the pointwise, Bonferroni, Šidák,
projection, and sup-t bands. The sup-t band is known to be the narrowest simultaneous
confidence band (in every realization of the data) within this class. We show that when the
estimators of the individuals parameters of interest are highly dependent, the sup-t band is
substantially narrower than the Bonferroni band. We also show that the Bonferroni band is
narrower than projection-based bands, unless the number of parameters of interest is orders
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of magnitude larger than the dimension of the underlying model.
Second, we show that the optimal band within the one-parameter class, the sup-t band,

uniquely minimizes worst-case regret among all translation equivariant confidence bands.
The regret is the ratio of attained loss to the smallest possible loss under a given loss function.
The “worst case” is taken over all possible (homogeneous of degree 1) loss functions that
depend on the component-wise lengths of the band. Hence, among the large collection of
translation equivariant bands, the sup-t band provides the smallest possible upper bound on
regret when the researcher is unsure about the audience’s loss functions. We establish the
decision theoretic result in a linear Gaussian model motivated by our asymptotic analysis.

Third, we propose a Bayesian implementation of the sup-t band with finite-sample si-
multaneous credibility 1 − α. The band equals the Cartesian product of component-wise
equal-tailed credible intervals, where we “calibrate” the tail probability to achieve the de-
sired simultaneous credibility for the band. This procedure is applicable in any setting
where we are able to draw from the finite-sample posterior distribution of the underlying
model parameters. If the posterior satisfies a Bernstein-von Mises property, we show that
the Bayesian band is asymptotically equivalent with standard plug-in and bootstrap imple-
mentations of the sup-t band. The plug-in, bootstrap, and Bayes sup-t bands are quickly
computable in many econometric models, as they avoid challenging numerical optimization.

We illustrate the general applicability of our methods and theoretical results through two
empirical applications. Our main application computes simultaneous confidence bands for
impulse response functions in a Vector Autoregression (VAR) identified by exclusion restric-
tions or by an external instrument. While many recent papers have constructed confidence
bands for VAR analysis, we appear to be the first to provide analytical guidance for choos-
ing among different bands in this nonlinear setting. Following Gertler & Karadi (2015),
our empirics focus on the impulse response function of corporate credit market stress to
monetary policy shocks. In this application, the sup-t band, which has hitherto not been
exploited in the VAR literature, substantially improves on the oft-used Bonferroni and pro-
jection bands. Our second application constructs confidence bands for a linear regression
coefficient estimated using different sets of control variables (sensitivity analysis).

Literature. Since the original contribution by Working & Hotelling (1929), the literature
on simultaneous confidence bands has grown vastly. Decision-theoretic contributions include
Naiman (1984, 1987), Piegorsch (1985a,b), and the comprehensive list of references in Liu
(2011). Despite the large body of work and a plethora of simultaneous confidence bands avail-
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able, there are few concrete recommendations for practitioners outside the linear regression
model. We appear to be the first to compare the popular projection, Šidák, and Bonferroni
bands in a general non-linear framework relevant to many econometric applications.1

This obvious gap in the study of simultaneous confidence bands has generated renewed
interest in the subject. In an insightful recent paper, Freyberger & Rai (2017) propose a novel
computational procedure for obtaining an approximately optimal confidence band given a
particular loss function. Our contribution is complementary: We show that the simple sup-t
band has a worst-case regret optimality property when the decision-maker is unsure about
the appropriate loss function.

The sup-t band has a long tradition in nonparametric regression and density estimation.
Wasserman (2006, chapter 5.7) gives a textbook treatment. Recent papers in economet-
rics have developed sup-t-type bands with frequentist validity for nonparametric instrumen-
tal variable regression (Horowitz & Lee, 2012), counterfactual distributions (Chernozhukov
et al., 2013), densities (Chernozhukov et al., 2014), and conditional average treatment effects
(Lee et al., 2017). Unlike these papers, we focus on a general but finite-dimensional setting,
and we provide analytical comparisons of several popular bands.

The issue of how to construct optimal simultaneous confidence bands has many parallels
in the multiple hypothesis testing literature (Romano et al., 2010, section 8). Instead of
dealing with test power, our analysis focuses directly on the width of confidence bands—a
key issue for practitioners. Our one-parameter class of confidence bands can be obtained by
inverting the class of single-step multiple testing procedures, using studentized test statistics.
Lehmann & Romano (2005, chapter 9) show that the sup-t band is optimal within this class
under certain equivariance conditions. White (2000) and Hansen (2005) construct multiple
hypothesis testing procedures that are analogues of the sup-t band. Romano & Wolf (2005,
2007) and List et al. (2016) develop step-down multiple testing procedures that improve on
the finite-sample power of single-step procedures. Our worst-case regret result does not seem
to have a direct parallel in the multiple testing literature.

Outline. Section 2 shows that many popular confidence bands lie in a one-parameter
class, allowing analytical comparisons of their relative widths. Section 3 shows that the
sup-t band minimizes worst-case regret in a Gaussian limit experiment. Section 4 discusses
implementation of the sup-t band using a plug-in approach, a bootstrap approach, and a
novel Bayesian approach. Section 5 applies the theory to construct optimal simultaneous

1Some of our results are well-known in linear special cases. See Section 2 for references.
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confidence bands for impulse response functions in VAR analysis. Section 6 discusses ex-
tensions and future research directions. Appendix A contains supplementary results. Proofs
are relegated to Appendix B.

Notation. Convergence in probability and distribution under the fixed true data gener-
ating process are denoted p→ and d→. Ip is the p× p identity matrix, and 0p is a p× 1 vector
of zeros. If Ω is p × p and positive semidefinite, Ω1/2 denotes any p × p matrix such that
Ω1/2Ω1/2′ = Ω. The p-dimensional normal distribution with mean vector µ and variance ma-
trix Ω is denoted Np(µ,Ω). The ζ ∈ (0, 1) quantile of the χ2(p) distribution is denoted χ2

p,ζ ;
for p = 1, we just write χζ ≡ χ1,ζ . The ζ ∈ (0, 1) quantile of random variable X is denoted
Qζ(X). The Euclidean and maximum norms are denoted ‖ · ‖ and ‖ · ‖∞, respectively. For
any set S ⊂ Rp and vector y ∈ Rp, we define S + y ≡ {s+ y | s ∈ S}.

2 Comparison of popular confidence bands

In this section we show that many popular confidence bands lie asymptotically in a one-
parameter class of bands, allowing us to analytically compare their relative widths. Bands
covered in our analysis include Bonferroni, Šidák, projection, and sup-t bands. The well-
known sup-t band is the optimal choice within the one-parameter class. The purpose of
this section is to give advice for applied users phrased in terms of a practically important
performance measure, namely the relative widths of the confidence bands.

2.1 Model and assumptions

Our framework applies to models with a finite-dimensional parameter vector for which a
consistent and asymptotically normal estimator is available. We do not restrict the correla-
tion structure, and we do not assume that the data is i.i.d. We now present our model and
assumptions, and we explain what we mean by a simultaneous confidence band.

We seek to construct simultaneous confidence bands for a vector-valued parameter of
interest θ ∈ Rk, which is given by a possibly nonlinear transformation of an underlying
parameter µ ∈ Rp. That is, θ ≡ h(µ) for a function h(·). We do not restrict the relative
magnitudes of the dimensions p and k, except in assuming that they are both finite. A
simultaneous confidence band for θ is a k-fold Cartesian product

Ĉ =×k
j=1Ĉj
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of data-dependent intervals Ĉj ⊆ R that covers the true parameter vector θ = (θ1, . . . , θk)′

with probability at least 1− α asymptotically:

lim inf
n→∞

P (θ ∈ Ĉ) = lim inf
n→∞

P (θj ∈ Ĉj for all j) ≥ 1− α, (1)

where n denotes the sample size. We also refer to Cartesian products of intervals as rectangu-
lar sets. Unlike confidence ellipsoids, rectangular sets are easy to visualize in two dimensions.

Before stating our assumptions, we briefly discuss two examples that motivated our paper.

Example 1 (Impulse response function in a point-identified SVAR). Consider a finite-
order Structural Vector Autoregression (SVAR) in the d time series yt = (y1,t, . . . , yd,t)′ with
structural shocks εt = (ε1,t, . . . , εd,t)′. The parameter of interest is the vector θ = (θ1, . . . , θk)′

that contains the impulse response coefficients at horizons ` = 0, 1, . . . , k − 1 of the first
variable y1,t with respect to the first shock ε1,t. The parameter vector µ contains the VAR lag
coefficients and innovation variance matrix. If we make assumptions such that θ is point-
identified from µ, the map h(·) is well-defined. In most empirical applications we will have
p > k. A simultaneous confidence band for θ has the interpretation that the entire true
impulse response function (out to horizon k− 1) is contained in the band with probability at
least 1− α, in repeated experiments.

Example 2 (Sensitivity analysis). We regress the dependent variable yt on the covariate
xt. While we only care about the linear regression coefficient on xt, we want to additionally
control for other variables but are unsure about the right set of controls. Let w(1)

t , . . . , w
(k)
t

be k different vectors of potential control variables. Here µ = θ = (β1, . . . , βk)′, where βj is
the coefficient on xt in a population linear projection of yt on (1, xt, w(j)′

t )′. A simultaneous
confidence band allows the audience to gauge the statistical significance of differences between
coefficients βj across specifications j = 1, . . . , k.

We assume that the underlying parameter vector µ can be estimated consistently and
asymptotically normally, and that the transformation from µ to θ is smooth. Let the j-th
element of the map h(·) be denoted hj(·), j = 1, . . . , k.

Assumption 1. The following asymptotic limits are all pointwise as n → ∞, assuming a
fixed true data generating process.

(i) The true parameter µ lies in the interior of a convex and open parameter spaceM⊂ Rp.

(ii) There exists an estimator µ̂ of µ such that
√
n(µ̂− µ) d→ Np(0p,Ω). The p× p matrix

Ω is symmetric positive semidefinite (possibly singular).
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(iii) There exists an estimator Ω̂ of Ω such that Ω̂ p→ Ω.

(iv) The transformation h : M→ Rk is continuously differentiable onM. Write the Jaco-
bian as ḣ(·) = (ḣ1(·), . . . , ḣk(·))′ ∈ Rk×p, where ḣj(µ̃) ≡ ∂hj(µ̃)/∂µ̃ for any µ̃ ∈M.

(v) All diagonal elements Σjj of the k × k matrix Σ ≡ ḣ(µ)Ωḣ(µ)′ are strictly positive.

The assumption imposes standard regularity conditions. Observe that we do not restrict
the data to be i.i.d. Condition (i) requires µ to lie in the interior of a convex parameter space.
Conditions (ii) and (iii) require the existence of a consistent and asymptotically normally
estimator µ̂ of µ and a consistent estimator Ω̂ of the asymptotic variance Ω. Note that Ω
may be singular, which is important in applications to impulse response function estimation
with non-stationary data, cf. Section 5.1. Condition (iv) requires the transformation from
underlying model parameters µ to parameters of interest θ to be smooth, as is often the case
in applied work. Finally, condition (v) implies that the plug-in estimator θ̂j ≡ hj(µ̂) has
non-zero asymptotic variance for each j.

Assumption 1 implies that the plug-in estimator θ̂ = (θ̂1, . . . , θ̂k)′ ≡ h(µ̂) for the pa-
rameter vector of interest θ is asymptotically normal, with a possibly singular limit. An
application of the delta method yields:

√
n(θ̂ − θ) d→ Nk(0k,Σ). (2)

The asymptotic variance-covariance matrix Σ of θ̂ is singular in many applications, e.g., if
k > p. Define the usual pointwise standard error for θ̂j:

σ̂j ≡ n−1/2
√
ḣj(µ̂)′Ω̂ḣj(µ̂), j = 1, . . . , k.

Under Assumption 1, a valid pointwise 1−α confidence interval for parameter θj is given by
[θ̂j− σ̂jχ1−α, θ̂j + σ̂jχ1−α].2 However, the Cartesian product of pointwise confidence intervals
j = 1, . . . , k fails to yield simultaneous coverage (1) except in trivial cases, as is well known.

2.2 One-parameter class

We now introduce a one-parameter class of confidence bands that includes most of the
popular choices in applied work, e.g., Bonferroni, Šidák, projection, and sup-t. The class is

2Recall that χ2
1−α is the 1− α quantile of the χ2(1) distribution, i.e., the square of the 1− α/2 quantile

of the standard normal distribution.
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parameterized by a positive scalar c, which governs the width of the confidence band.

Definition 1. For any c > 0, define the rectangular set

B̂(c) ≡
k×
j=1

[
θ̂j − σ̂jc, θ̂j + σ̂jc

]
.

B̂(c) is the Cartesian product of Wald-type confidence intervals for each element of θ.
The parameter c scales up or down the entire confidence band: If c ≤ c̃, then B̂(c) ⊂ B̂(c̃)
in every realization of the data. The band B̂(c) can also be interpreted as the collection of
those parameter vectors θ for which the largest component-wise t-statistic |θj − θ̂j|/σ̂j does
not exceed a critical value c:

B̂(c) =

θ ∈ Rk

∣∣∣∣∣ max
j=1,...,k

|θj − θ̂j|
σ̂j

≤ c

 .
The one-parameter class—in addition to containing many commonly encountered confidence
bands—has some additional appealing properties. First, each component interval of the band
B̂(c) is centered at the natural point estimate θ̂j. Second, any band B̂(c) is balanced in the
sense of Beran (1988) and Romano & Wolf (2010), i.e., the pointwise coverage probabilities
P (θj ∈ [θ̂j − σ̂jc, θ̂j + σ̂jc]) of the component intervals have the same asymptotic limit for
all j. Third, the one-parameter class of confidence bands can be obtained by inverting the
class of single-step multiple hypothesis testing procedures based on studentized test statistics
(Romano et al., 2010, section 8).

Now, for the sake of exposition, we state a straightforward result on the coverage proba-
bility of any band B̂(c).

Lemma 1. Let Assumption 1 hold. Let {âj, b̂j}j=1,...,k be a collection of scalar random
variables such that âj, b̂j = op(n−1/2) as n→∞ for j = 1, . . . , k. Then, for any c > 0,

P
(
θ ∈ ×k

j=1

[
θ̂j − σ̂jc− âj, θ̂j + σ̂jc+ b̂j

])
→ P

(
max
j=1,...,k

∣∣∣Σ−1/2
jj Vj

∣∣∣ ≤ c
)
,

where V = (V1, . . . , Vk)′ ∼ Nk(0k,Σ), and Σjj is the j-th diagonal element of Σ.

Hence, the asymptotic coverage probability of a band in the one-parameter class is de-
termined by the cumulative distribution function of the maximum of the absolute value of
k correlated standard normal variables.3 The quantiles of this maximum will play a central

3Analogous expressions are common in the theory of multiple testing (Lehmann & Romano, 2005, chapter
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role in the following.

Definition 2. For any ζ ∈ (0, 1) and any k × k symmetric positive semidefinite matrix Σ̃
with strictly positive diagonal elements Σ̃jj, j = 1, . . . , k, define

qζ(Σ̃) ≡ Qζ

(
max
j=1,...,k

∣∣∣Σ̃−1/2
jj Ṽj

∣∣∣) ,
where Ṽ = (Ṽ1, . . . Ṽk)′ ∼ Nk(0k, Σ̃).

Bands in one-parameter class. Many popular confidence bands in applied work lie
in the one-parameter class for a particular choice of the critical value c. The pointwise band
is the Cartesian product of pointwise confidence intervals, so it corresponds to c = χ1−α.
The Bonferroni and Šidák bands are obtained by applying multiple comparisons adjustments
to the pointwise critical value, yielding c = χ1−α/k and c = χ(1−α)1/k , respectively. If the
asymptotic variance Σ of θ̂ is nonsingular, the θ-projection band equals the smallest rectangle
in Rk that contains the usual Wald confidence ellipsoid for θ, which can be seen with a little
algebra to correspond to c = χk,1−α. Finally, the sup-t band yields asymptotic simultaneous
coverage of exactly 1 − α, which according to Lemma 1 is achieved by c = q1−α(Σ) (or a
consistent estimate, cf. Section 4). Appendix A.1 provides details on these bands.

Table 1 presents the critical values c for the different confidence bands (the µ-projection
band is defined below). The sup-t band achieves asymptotic simultaneous coverage exactly
at the pre-specified level. All other bands either fail to achieve simultaneous coverage (the
pointwise band) or are conservative and thus unnecessarily wide.

Figure 1 illustrates the various confidence bands in (θ1, θ2) space for the case k = 2.4

The various confidence bands are represented as rectangles due to their Cartesian product
structure. The θ-projection band is the smallest rectangle that contains the typical Wald
ellipse for θ, drawn in black. The sup-t rectangle is the smallest rectangle that has coverage
probability at least 1−α and for which the ratio of its edge lengths equals

√
Var(θ̂1)/Var(θ̂2)

(the requirement imposed by our one-parameter class).

9) and the theory of suprema of Gaussian processes (Giné & Nickl, 2016, chapter 2). The asymptotically
negligible random variables {âj , b̂j}j=1,...,k in Lemma 1 allow for analysis of rectangular bands whose edges
are all within asymptotic order op(n−1/2) of a band B̂(c) in our one-parameter class. This will permit us to
consider bands obtained by projection and bootstrap strategies, as explained below.

4A similar illustration appears in Lütkepohl et al. (2015b, figure S1, supplemental material).

9



Band Critical value c Asymptotic coverage
Pointwise χ1−α < 1− α
Sup-t q1−α(Σ) = 1− α
Šidák χ(1−α)1/k > 1− α

Bonferroni χ1−α/k > 1− α
θ-projection χk,1−α > 1− α
µ-projection χp,1−α > 1− α

Table 1: List of critical values of popular confidence bands in the one-parameter class. The last
column describes each band’s asymptotic coverage probability.

Two-dimensional illustration of Wald ellipse and confidence bands

-2 -1 0 1 2

-1

-0.5

0

0.5

1
Wald
Pointwise
Sup-t
Sidak
Bonferroni
-projection

Figure 1: 90% Wald confidence ellipse (black) and rectangular confidence regions (colored rect-
angles) for the two-dimensional mean θ = (θ1, θ2)′ of a normally distributed parameter estimator
θ̂, given point estimate θ̂ = (0, 0)′. The figure assumes the correlation structure Var(θ̂1) = 1,
Var(θ̂2) = 0.25, Corr(θ̂1, θ̂2) = 0.9.
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µ-projection. If the standard errors σ̂j are difficult to compute, it is appealing to obtain a
confidence band for θ as the rectangular projection of the Wald confidence set for µ. Assume
Ω is positive definite. If the Wald ellipse for µ is defined as

Ŵµ ≡
{
µ̃ ∈M

∣∣∣ n(µ̂− µ̃)′Ω̂−1(µ̂− µ̃) ≤ χ2
p,1−α

}
,

its rectangular projection with respect to the function h(·) is given by5

Ĉµ-proj ≡
k×
j=1

hj(Ŵµ) =
k×
j=1

[
inf

µ̃∈Ŵµ
hj(µ̃), sup

µ̃∈Ŵµ
hj(µ̃)

]
.

This is a multi-parameter version of the popular Krinsky & Robb (1986) procedure for
constructing confidence intervals for nonlinearly transformed estimators. The µ-projection
band has asymptotic simultaneous coverage probability of at least 1−α under Assumption 1,
by the standard projection inference argument (e.g., Dufour, 1990). Typically, however, the
simultaneous coverage probability will be conservative (“projection bias”).

We show that the µ-projection band is also contained in our one-parameter class, up to
asymptotically negligible terms, provided Assumption 1 holds and Ω is positive definite:

Ĉµ-proj =
k×
j=1

[
θ̂j − σ̂jχp,1−α + op(n−1/2), θ̂j + σ̂jχp,1−α + op(n−1/2)

]
.

See Appendix A.1 for a detailed statement.6

Bootstrap versions. Our framework can also accommodate bootstrap versions of the
above confidence bands, as discussed in Appendix A.1.

2.3 Comparison of bands

We now analytically compare the relative widths of bands in the one-parameter class. As
is well known, the sup-t band is the optimal band within this class. We can compare the
(suboptimal) relative widths of the projection, Bonferroni, and Šidák bands without seeing

5The fact that hj(Ŵµ) = [inf
µ̃∈Ŵµ

hj(µ̃), sup
µ̃∈Ŵµ

hj(µ̃)] follows from continuity of h(·). The rectangular

projection is the smallest rectangle containing the usual projection set h(Ŵµ) = {h(µ̃) | µ̃ ∈ Ŵµ}, which in
general is not rectangular (and is therefore hard to visualize in two dimensions).

6A heuristic version of the argument appears in Cox & Ma (1995). The result is well known in the special
case of h(·) being a linear map, as it serves as the basis for Scheffé confidence bands in linear regression.
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the data. Furthermore, we discuss the conditions under which the sup-t band offers large or
small improvements relative to the other bands.

For any two bands in the one-parameter class, the relative ratio of their critical values
yields the relative ratio of the lengths of each of their component intervals. Henceforth, we
will call this number the relative width of the band, which is a well-defined concept within
our one-parameter class (outside this class, the relative length of component intervals could
vary across components j = 1, . . . , k, and relative lengths could be data-dependent).

cpointwise ≤ csup-t ≤ cŠidák: The sup-t band is optimal within the one-parameter class since
it selects the critical value c as the smallest value that guarantees asymptotic simultaneous
coverage of 1 − α.7 The sup-t critical value depends on the correlation structure Σ of the
estimator θ̂, but the pointwise and Šidák critical values constitute its best-case and worst-
case values. On the one hand, it is straight-forward to show that the sup-t critical value
must weakly exceed the pointwise critical value, with equality only if the elements of θ̂ are
asymptotically perfectly correlated. On the other hand, the sup-t critical value is always
weakly smaller than both the Šidák critical value and the µ-projection critical value, cf.
Appendix A.2 for details. Moreover, if k ≤ p, the sup-t critical value equals the Šidák
critical value if and only if the elements of θ̂ are asymptotically independent. Hence, the
pointwise and Šidák bands can be thought of as best-case and worst-case scenarios for the
sup-t band, respectively. In applications where the elements of θ̂ are close to uncorrelated,
there is little loss in using the simple Šidák band instead of the sup-t band, although the
computational cost of the latter band is also small, cf. Section 4.

cŠidák, cPointwise, cBonferroni, cθ-projection: Our framework allows us to compare the many
suboptimal but popular confidence bands. While the sup-t band is easy to compute, cf.
Section 4, these other bands are often computationally even simpler, and they are frequently
encountered in applied work. Readers who are only interested in the optimality properties
of the sup-t band should skip to the next section.

Except for the sup-t band, the relative widths of all other bands depend only on the
significance level α and the dimensions p and k of the model and parameter of interest.
From the perspective of first-order asymptotic analysis, no additional information is needed
to compare these different bands.8

7This is well known in the single-step multiple testing literature (Lehmann & Romano, 2005, chapter 9).
8Indeed, researchers can decide on a band before obtaining the relevant data, as long as the model has

been specified. The relative widths of the pointwise, Šidák, Bonferroni, and θ-projection bands are the same
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Comparison of critical values for confidence bands

0 10 20 30 40 50
1
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0 10 20 30 40 50
1
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1.04
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 = 0.05
 = 0.10
 = 0.32

Figure 2: Relative critical values of the pointwise, Šidák, Bonferroni, and θ-projection bands.
The dimension k = dim(θ) is along the horizontal axis. The three colored curves correspond to the
significance levels α = 0.05 (black), α = 0.1 (red), and α = 0.32 (blue).
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Figure 2 plots the relative widths of the pointwise, Šidák, Bonferroni, and θ-projection
confidence bands for different values of the dimension k of θ and different significance levels
α. We do not plot the µ-projection critical value χp,1−α, but it is clear that it exceeds the
θ-projection critical value χk,1−α if and only if p > k.

cPointwise ≤ cŠidák: The first display of the figure shows that, while the relative width of
the Šidák and pointwise bands must exceed one, it is below 2 for k ≤ 50 and α ≤ 0.1 (hence,
this also applies to sup-t vs. pointwise). In fact, Appendix A.2 states the well-known result
that the Šidák critical value grows very slowly with k, specifically at rate

√
log k, so that

there is little penalty in terms of width incurred from including additional parameters of
interest in θ.9

cŠidák ≤ cBonferroni, cθ-projection: The second display of the figure shows that the Bonferroni
critical value always exceeds the Šidák one, but they are within 4% of each other for all
common significance levels. Finally, the last display of the figure shows that θ-projection
leads to much wider bands than Šidák (and thus sup-t), unless k is very small. Hence, there
appears to be no good reason to use θ-projection (with the usual Wald critical value). See
Appendix A.2 for analytical results supporting the graphical evidence in Figure 2.

cŠidák ≤ cµ-projection in many relevant models: The Šidák (and sup-t) bands are nar-
rower than the µ-projection band in most practical cases. While the µ-projection band is
always wider than the sup-t band, it can be narrower than the Šidák band if k � p. How-
ever, Appendix A.2 shows that for this to happen at usual significance levels, either the
number k of parameter of interest must be in the 1,000s, or the number p of underlying
model parameters must be less than 10.

cBonferroni ≤ cθ-projection ≤ cµ-projection if α < 0.5 and 2 ≤ k ≤ p: If α < 0.5 and k ≥ 2,
then χ1−α/k < χk,1−α, i.e., in this case the Bonferroni band is narrower than θ-projection.
This result was proven by Alt & Spruill, 1977, although it is seemingly not well known. As
a corollary, the Bonferroni band is also narrower than the µ-projection band if p ≥ k.

Summary. Table 1 shows the various confidence bands ordered in terms of relative width
(narrowest at the top) in the empirically common case α ≤ 0.5 and k ≤ p. If instead k � p,

in any finite sample. However, the comparison with µ-projection is asymptotic.
9Of course, the accuracy of the asymptotic normal approximation may deteriorate for large k.
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then it can happen that µ-projection leads to a narrower band than Šidák or Bonferroni,
although the requirements are stringent, as shown in Appendix A.2. θ-projection always
leads to a wider band than Šidák and Bonferroni for α ≤ 0.5.

3 Decision theoretic justification for sup-t band

Is the sup-t band in some sense optimal even outside the one-parameter class analyzed in the
previous section? We show that that the sup-t band is indeed the unique minimizer of worst-
case regret among translation equivariant confidence bands. Here “worst case” refers to the
choice of loss function. The sup-t band is thus a good default option when the researcher
is unsure about the appropriate choice of loss function. Our analysis focuses on a Gaussian
limit experiment motivated by the preceding asymptotic analysis.

3.1 Gaussian limit experiment and equivariance

We first describe the Gaussian limit experiment and translation equivariance concept used
in the decision-theoretic analysis.

Finite-sample model. We specialize our framework to a Gaussian location model with
known covariance matrix, where the object of interest is a vector of linear combinations of
the unknown mean. For our purposes, it is without loss of generality to assume that the
covariance matrix of the data is the identity matrix, as discussed below. Hence, we assume
we observe a single multivariate normal draw

X ∼ Np(µ, Ip), (3)

where the mean vector µ ∈ Rp is unknown. The distribution of the data under the parameter
µ ∈ Rp is denoted Pµ. Let G ∈ Rk×p be a fixed, known matrix, where k may be greater than,
equal to, or smaller than p. We seek a simultaneous confidence band for the k-dimensional
parameter of interest θ ≡ Gµ.

We view the finite-sample Gaussian model as the relevant limit experiment corresponding
to the delta method asymptotics of Section 2. The draw X plays the same role as the
estimator µ̂ in the previous section. Likewise, the matrix G plays the same role as the
matrix ḣ(µ)Ω1/2 (as the asymptotic analysis in the previous section relies on a linearization
of the function h(·)). Since the finite-sample analysis hinges on properties of θ̂ ≡ GX ∼
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Nk(θ,GVar(X)G′), and we do not restrict G, there is no loss of generality in assuming
Var(X) = Ip. Thus, the present finite-sample model allows us to focus on the essentials of
the researcher’s decision problem.

Decision problem: action space, decision rule, loss function. We now specify
the decision-maker’s action space and loss function. The decision-maker’s action space is the
set R of closed k-dimensional rectangles (or bands):

R ≡
{
×k

j=1[aj, bj]
∣∣∣ aj, bj ∈ R, aj ≤ bj, j = 1, . . . , k

}
.

A decision rule is a map C : Rp → R from data to k-dimensional bands. We refer to C as
a confidence band and we restrict ourselves to those functions that guarantee a confidence
level of at least 1− α. That is, the set of confidence bands under consideration is

C1−α ≡
{
C : Rp → R

∣∣∣∣ inf
µ∈Rp

Pµ(Gµ ∈ C(X)) ≥ 1− α
}
.

In order to define the loss function, we first introduce the class of functions L that are
increasing with respect to the partial order on Rk:

L ≡
{
L : Rk

+ → R+

∣∣∣ L(r) ≤ L(r̃) for all r, r̃ ∈ Rk
+ s.t. r ≤ r̃ for all elements,

L(r) > 0 whenever r > 0 for all elements
}
.

The decision-maker is assumed to have a loss function of the form

Loss(R;µ) ≡ L(b1 − a1, . . . , bk − ak) for µ ∈ Rp, R =×k
j=1[aj, bj] ∈ R, (4)

which implies that i) the decision maker penalizes bands with large lengths of the component
intervals, and ii) the ranking between bands does not depend on µ. In a slight abuse of
notation, we write L(R) instead of Loss(R;µ) for L ∈ L and R ∈ R.

Translation equivariant bands. For any loss function L in the component-wise length
class L, the decision problem of constructing a confidence band in a Gaussian location model
is invariant under translations of the data X, see Appendix A.3. Motivated by the invariance
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of the decision problem, we consider the following class of translation equivariant bands:10

Ceq ≡
{
C : Rp → R

∣∣∣ C(x+ λ) = Gλ+ C(x) for all x, λ ∈ Rp
}
.

For ease of exposition, we state a simple characterization of translation equivariance:11

Lemma 2. Ceq = {C : Rp → R | C(x) = Gx+R, R ∈ R }.

Thus, translation equivariant bands are of the form C(x) = ×k
j=1[θ̂j − aj, θ̂j + bj] for

nonrandom aj, bj ≥ 0, j = 1, . . . , k. As far as we know, all existing decision theoretic anal-
yses of simultaneous confidence bands impose translation equivariance, cf. the references in
Section 1. Bands B̂(c) in the one-parameter class analyzed in Section 2 are all translation
equivariant in the case of linear h(·) and known variance of θ̂. Note that translation equiv-
ariance does not require symmetry of the confidence band around θ̂, nor does it require the
one-parameter structure.

Risk of translation equivariant bands. The risk of a translation equivariant band
equals the realized loss, which depends on neither the data X nor the parameter µ: It is easy
to verify that L(C(X)) = L(R) for every realization of the data and that Pµ(Gµ ∈ C(X)) =
P (GZ ∈ R), where Z ∼ Np(0p, Ip). Moreover, the coverage constraint in the definition of
C1−α reduces the class of bands under consideration to

C1−α ∩ Ceq =
{
C : Rp → R | C(x) = Gx+R, R ∈ R1−α

}
,

where
R1−α ≡

{
R ∈ R

∣∣∣ P (GZ ∈ R) ≥ 1− α, Z ∼ Np(0p, Ip)
}
.

3.2 Sup-t band minimizes worst-case regret

We now show that the sup-t band minimizes worst-case regret among translation equivariant
confidence bands. Given a loss function, we define regret as the ratio of the actual loss to
the smallest possible loss. We consider a decision-maker looking for a confidence band that
provides the best guarantee on regret across a range of reasonable loss functions. We restrict
the class of loss functions to be homogeneous of degree 1 in lengths.

10Recall: For R =×k
j=1[aj , bj ], Gλ+R ≡×k

j=1[g′jλ+ aj , g
′
jλ+ bj ] ∈ R, where g′j is the j-th row of G.

11A similar result appears in Lehmann & Romano (2005, chapter 9.4)
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Smallest possible loss in R1−α. Translation equivariance implies that the decision
problem reduces to a finite-dimensional optimization problem. Given a particular loss func-
tion L ∈ L in component lengths, an optimal equivariant band equals C(x) = Gx + R∗,
where

R∗ ∈ argmin
R∈R1−α

L(R). (5)

This is a 2k-dimensional optimization problem, with the parameters being the endpoints
of the k component intervals of the rectangle R. In general, the solution to the program
(5) is not available in closed form.12 The main practical challenge is that the constraint
set R1−α requires evaluation of the probability that a k-dimensional correlated Gaussian
vector GZ lies in a given rectangle. Freyberger & Rai (2017) develop computational tools to
numerically solve problems of the form (5) (as well as problems with certain different types
of loss functions).

Minimum worst-case regret. In practice, it is difficult to decide on a particular loss
function. Researchers reporting confidence bands may recognize that different audience
members will care about different features of the parameter vector θ = (θ1, . . . , θk)′: For
example, one group of people cares only about θ1, another group wishes to compare the
magnitudes of θ1 and θ2, and a third group is interested in the shape of the function j 7→ θj.

In light of this observation, we assume that our decision-maker looks for an equivariant
confidence band C(x) = Gx+R that minimizes the worst-case (relative) regret

sup
L∈LH

L(R)
infR̃∈R1−α

L(R̃)

over R. The worst case is taken over all loss functions in a class LH , to be defined below.
Although we think our definition of worst-case regret is quite reasonable, we were not able
to find applications of this exact criterion in the literature.13

12In certain special cases the solution is simple. For example, under the worst-case length loss function
L(r) = ‖r‖∞, the optimal band is the equal-width band of Gafarian (1964).

13Notice that this notion of worst-case regret is different from the common notion of minimax regret in
decision theory, where the worst case is taken over possible values for the unknown parameter, here denoted
µ (Berger, 1985, chapter 5). These two notions can be reconciled if we think of the audience’s preferences
L as an unknown parameter that implicitly enters the overall loss function. Our criterion is also different
from that of Naiman (1987), who considers the worst case over possible covariate values at which a linear
regression line is to be evaluated.
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Loss functions under consideration. We assume that the decision-maker only con-
siders loss functions that are homogeneous of degree 1 in component interval lengths:

LH ≡
{
L ∈ L

∣∣∣ L(βr) = βL(r) for all r ∈ Rk
+, β > 0

}
.

This class includes the weighted-average loss functions L(r) = ∑k
j=1wjrj for wj ≥ 0, ∑j wj =

1 (Hoel, 1951), the maximum-length loss function L(r) = ‖r‖∞ (Gafarian, 1964), and the
Euclidean loss L(r) = ‖r‖ (indeed, any norm on Rk could be used). The class LH excludes
the loss function L(r) = ∏k

j=1 rj, which measures the volume of a rectangle in Rk. Since the
main motivation for using confidence bands is to visualize k-dimensional uncertainty in a
two-dimensional figure, the volume loss function is not of primary concern.

Main result. We are now ready to state the result on worst-case regret. In the present
Gaussian limit experiment, we define the sup-t band as

Csup(x) ≡ Gx+Rsup, Rsup ≡
k×
j=1

[−‖gj‖q1−α(GG′), ‖gj‖q1−α(GG′)] ,

where g′j is the j-th row of G = (g1, . . . , gk)′, and q1−α(·) is given by Definition 1.

Proposition 1. For any R ∈ R1−α such that R 6= Rsup,

sup
L∈LH

L(R)
infR̃∈R1−α

L(R̃)
> sup

L∈LH

L(Rsup)
infR̃∈R1−α

L(R̃)
= q1−α(GG′)

χ1−α
.

Thus, the computationally convenient sup-t band is the translation equivariant band
which provides the best possible guarantee on regret across a range of reasonable loss func-
tions. The sup-t band will generally not be optimal—i.e., solve the optimization problem
(5)—for a particular loss function L.14 However, Proposition 1 gives a sense in which, among
the many possible equivariant confidence bands, the sup-t band is a particularly good default
choice in applications where there is no single appropriate loss function.

Remarks.

1. Proposition 1 complements our analysis of the one-parameter class in Section 2. There
we showed that the sup-t band is asymptotically preferable to other commonly encoun-

14Even so, it is interesting that the sup-t band is very close to the numerically computed optimal bands
in the empirical applications of Freyberger & Rai (2017, section 4).
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tered simultaneous confidence bands. In this section, we have argued that the sup-t
band has a particular optimality property also outside the one-parameter class.

2. Proposition 1 implies that any equivariant simultaneous confidence band other than
the sup-t band yields strictly larger regret than the sup-t band for some loss function
L ∈ LH . In particular, the proof shows that any simultaneous confidence band other
than sup-t must perform relatively poorly against a loss function that returns the
length of a single “least favorable” component interval.

3. It is easy to verify that the statement of Proposition 1 continues to hold if we replace
the class LH of homogeneous-of-degree-1 loss functions with the strictly smaller class
of weighted-average loss functions {L(r) = ∑

j wjrj |
∑
j wj = 1, wj ≥ 0, j = 1, . . . , k}.

We phrase the proposition in terms of the class LH because the expression for the
worst-case regret of the sup-t band relies intimately on homogeneity of degree 1 of the
loss L, as is clear from the proof.

4. Proposition 1 gives an explicit expression for the worst-case regret of the sup-t band;
it equals the ratio of the sup-t and pointwise critical values, cf. Section 2.2. It is a
consequence of Lemma 3 in Appendix A.2 that the worst-case regret for the sup-t band
can be further upper-bounded by the ratio χ(1−α)1/k/χ1−α of the Šidák and pointwise
critical values, which is independent of G. Hence, the sup-t band delivers guarantees
on regret across both loss functions and correlation structures.

4 Implementation of sup-t band

Here we describe how to implement the sup-t band using three computationally simple
approaches: a plug-in approach, a bootstrap approach, and a novel Bayesian approach.
These approaches are asymptotically equivalent under regularity conditions. The Bayesian
band has finite-sample simultaneous credibility at level 1− α, provided we are able to draw
from the finite-sample posterior distribution of the underlying model parameters µ.

Plug-in band. The most straight-forward feasible implementation of the sup-t band plugs
in a consistent estimator of the sup-t critical value. Algorithm 1 presents a standard proce-
dure to estimate the plug-in sup-t critical value q1−α(Σ).
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Algorithm 1 Plug-in sup-t band
1: Compute the Jacobian ḣ(µ̂) and obtain Σ̂ = ḣ(µ̂)Ω̂ḣ(µ̂)′, cf. notation in Assumption 1
2: Draw N i.i.d. normal vectors V̂ (`) ∼ Nk(0k, Σ̂), ` = 1, . . . , N
3: Let q̂1−α be the empirical 1− α quantile of maxj |Σ̂−1/2

jj V̂
(`)
j | across ` = 1, . . . , N

4: Ĉ = B̂(q̂1−α) =×k
j=1[θ̂j − σ̂j q̂1−α, θ̂j + σ̂j q̂1−α]

Bootstrap band. We also suggest a bootstrap implementation of the sup-t band which
is based on a valid strategy for bootstrapping the estimator µ̂. Algorithm 2 defines the
procedure for computing the quantile-based bootstrap band Ĉ. This algorithm also serves
as the basis for the Bayesian band defined below.

Algorithm 2 Quantile-based bootstrap or Bayes band
1: Let P̂ be the bootstrap distribution of µ̂ or the posterior distribution of µ
2: Draw N samples µ̂(1), . . . , µ̂(N) from P̂

3: for ` = 1, . . . , N do
4: θ̂(`) = h(µ̂(`))
5: end for
6: Let Q̂j,ζ denote the empirical ζ quantile of θ̂(1)

j , . . . , θ̂
(N)
j

7: ζ̂ = sup{ζ ∈ [α/(2k), α/2] | N−1∑N
`=1 1(θ̂(`) ∈ ×k

j=1[Q̂j,ζ , Q̂j,1−ζ ]) ≥ 1− α}
8: Ĉ =×k

j=1[Q̂j,ζ̂ , Q̂j,1−ζ̂ ]

The bootstrap band is easy to implement in many applications. Valid bootstrap proce-
dures for µ̂ often exist in smooth i.i.d. models (van der Vaart, 1998, chapter 23) as well as
in time series models (Kilian & Lütkepohl, 2017, chapter 12). Unlike the plug-in approach,
the bootstrap band does not require computation of the derivatives of h(·). The bootstrap
band equals the Cartesian product of Efron’s equal-tailed percentile bootstrap confidence
intervals, where the percentile is “calibrated” so that the rectangle ×k

j=1[Q̂j,ζ , Q̂j,1−ζ ] covers
at least a fraction 1−α of the bootstrap draws of θ̂. This can be achieved easily by bisection
or other numerical solvers, since the fraction of draws contained in the rectangle is mono-
tonically decreasing in the scalar ζ; moreover, the usual pointwise and Bonferroni bounds
imply that the search can be confined to ζ ∈ [α/(2k), α/2] in any finite sample.15

15The bootstrap band is not guaranteed to deliver asymptotic refinements relative to the plug-in sup-
t band. As the sup-t critical value q1−α(Σ) depends on the unknown Σ, it appears difficult to achieve
refinements through simple bootstrap procedures. It would be interesting to investigate whether double
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Appendix A.4 defines an alternative band that bootstraps the sup-t critical value q1−α(Σ),
rather than using quantiles. This band also does not require calculating derivatives of h(·).

Bayesian band. If we are able to draw from the finite-sample posterior distribution of µ,
Algorithm 2 also provides an algorithm for computing a confidence band with simultaneous
Bayesian credibility equal to 1−α. Let P̂ in the algorithm denote the posterior distribution
of µ given data D. Then by construction the set Ĉ satisfies P (θ ∈ Ĉ | D) = 1−α, up to sim-
ulation error that vanishes as the number of posterior draws grows large. The simultaneous
credible band Ĉ is the Cartesian product of component-wise equal-tailed credible intervals,
where the tail probability has been calibrated to yield simultaneous credibility of 1− α.16

Summary. The plug-in band requires little computation if the derivatives of h(·) are easy
to compute. The Bayesian band is attractive if finite-sample Bayesian inference is desired.
The bootstrap band is quite generally applicable and, like the Bayesian band, does not
require computation of the derivatives of h(·). The bootstrapping of µ̂ or posterior sampling
of µ is only performed once and for all (yielding N draws). The only numerical optimization
necessary for the bootstrap and Bayes bands is the cheap monotonic and 1-dimensional root
finding problem for ζ̂ in Algorithm 2. As shown in Appendix A.4, the three implementations
of the sup-t band are asymptotically equivalent under standard regularity conditions like
bootstrap consistency and the Bernstein-von Mises property.

5 Applications

In this section we present applications of our theory on the relative performance of popular
simultaneous confidence bands. As discussed above, our framework applies to many econo-
metric settings where the researcher seeks to visualize the joint uncertainty across several
parameters. Here we focus on two concrete applications. Our main application shows that
the sup-t band improves on popular approaches to constructing simultaneous confidence
bands for impulse response functions in VARs, using Gertler & Karadi (2015) as an empir-
ical illustration. Our second application uses a simultaneous confidence band to visualize

bootstrap procedures can deliver refinements.
16This Bayesian band appears to be the first generically applicable method for constructing bands with

simultaneous credibility. Liu (2011, chapter 2.9) proposes a Bayesian simultaneous confidence band for
linear regression. The idea of calibrating the width of a rectangular confidence set to achieve simultaneous
confidence/credibility has appeared in different contexts in Kaido et al. (2016) and Gafarov et al. (2016).
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joint uncertainty in a sensitivity analysis of a linear regression coefficient estimated using
different sets of control variables.

5.1 Impulse response functions in VAR analysis

We estimate the effects of monetary policy shocks on corporate credit market stress using
recursive and instrumental variable identification strategies for VARs, as in Gertler & Karadi
(2015).17 The impulse reponse function analysis in their paper suggests that a monetary
shock that increases the one-year government bond rate by 20 basis points increases the
long-term credit spread by roughly 10 basis points, with an impact that remains elevated
(and pointwise statistically significant) at around 7 basis for half a year. Their reported
confidence bands, however, do not account for multiple comparisons.

The VAR literature has developed several procedures for conducting simultaneous infer-
ence on impulse response functions, but in our view theoretical comparisons and recommen-
dations for practice are still lacking (see Appendix A.5 for a literature review). The VAR
setting is outside the scope of existing decision theoretic papers on simultaneous confidence
bands, as impulse responses depend nonlinearly on the identified model parameters. Our
nonlinear framework in Section 2 allows us to analytically compare the various confidence
bands and provides theoretical support for the sup-t band. To our knowledge, other compre-
hensive comparisons of confidence bands for impulse response functions rely exclusively on
Monte Carlo experiments for particular data generating processes (Lütkepohl et al., 2015a,b).
Also, as far as we know, the sup-t band has not previously been exploited for inference on
impulse response functions.

Our analysis shows that the economic conclusions of Gertler & Karadi (2015) remain
valid when adjusting for multiple comparisons using the sup-t band: The effect of monetary
policy surprises on credit spreads remains significant 6 months after the shock. In contrast,
the suboptimal—but commonly used—Bonferroni or projection bands cannot rule out the
possibility that the effect of a monetary shock on credit spreads at any future horizon is zero
or even negative. We now present the details on the VAR specification and the empirical
results. See Appendix A.5 for a review of the standard structural VAR model.

Empirical specification. We use the data and specification in Gertler & Karadi (2015)
to perform inference on the impulse response function of the excess bond premium (EBP) to

17Their paper provides a very detailed analysis of the channels of transmission of monetary policy to
financial variables, but we focus on the effects on credit spreads.
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a contractionary monetary policy shock. The EBP was constructed by Gilchrist & Zakrajšek
(2012) to measure the part of the corporate bond spread that cannot be attributed to default
risk, so the EBP may be viewed as a measure of corporate credit market stress. The Gertler
& Karadi VAR baseline specification uses monthly U.S. data on industrial production, the
consumer price index, the 1-year government bond yield, and the EBP, from July 1979 to
June 2012.18 The VAR is estimated in levels and has τ = 12 lags. The number of model
parameters is then p = 206 (+4 for the external instrument specification mentioned below).
We follow Gertler & Karadi and consider impulse responses out to 48 months, i.e., k = 49
parameters of interest.19

Gertler & Karadi (2015) consider two identification schemes. First, as a baseline, they
use a recursive identification which imposes exclusion restrictions on the impact matrix H:
Industrial production and the consumer price index do not respond to monetary policy shocks
on impact, and the bond yield does not respond to EBP shocks on impact. Their preferred
specification, however, identifies the monetary shock using an external instrument zt given
by changes in federal funds futures prices in small time windows around scheduled Federal
Open Market Committee announcements.20 This instrument is arguably only correlated
with monetary policy surprises, as well as potential measurement error.

Empirical results. Figure 3 compares the pointwise, plug-in sup-t, Šidák, and Bonfer-
roni bands for the external instrument specification. The thick line shows the point estimate
(the same as in Gertler & Karadi, 2015), while the thin lines show various 68% simultaneous
confidence bands, as well as the 68% pointwise band (the narrowest). The main finding is
that the sup-t band is much narrower than the popular Bonferroni band. While the Bon-
ferroni band contains zero for all but the impact horizon, the sup-t band does not contain
zero for all horizons out to 6 months after the shock. Moreover, the sup-t band allows the
researcher to reject the null hypothesis that the impulse response function is flat for the
first 36 months, whereas this is not possible for the Bonferroni band. The figure shows
that the Šidák and Bonferroni bands virtually coincide, although the latter is slightly wider,
which conforms to the theory in Section 2. Appendix A.5 reports that the θ-projection and
(especially) µ-projection bands are much wider than the other bands, as theory predicts.

Figure 4 compares the plug-in, bootstrap, and Bayes implementations of the sup-t band,

18The data is available online: https://www.aeaweb.org/articles?id=10.1257/mac.20130329
19Appendix A.5 gives further details of the bootstrap, posterior sampling, and other technical aspects.
20We use the three-month-ahead futures series “ff4” preferred by Gertler & Karadi (2015). The data for

this series starts in January 1990.
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IRF confidence bands: IV identification, w/o projection
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Figure 3: 68% confidence bands for impulse response function of the EBP to a 1 standard deviation
contractionary monetary policy shock, external instrument identification, without projection bands.
Thick line: point estimate. Thin lines: confidence bands (legend is ordered with respect to width).
Šidák and Bonferroni bands virtually coincide.

as defined in Section 4, for the case of recursive identification.21 The three bands are very
similar, and they all contain zero at every horizon. Still, the use of the sup-t band allows us
to conclude that the width of the band is a legitimate feature of the data, not merely a result
of the conservativeness of the Šidák or Bonferroni bands. Gertler & Karadi (2015) conclude
that the difference between the recursively identified results and the external instrument
results call into question the recursive exclusion restrictions.

While our results are consistent with some of the simulation evidence provided by Lütke-
pohl et al. (2015a,b), the analytical perspective in this paper yields additional insights. First,
we showed that the narrowness of the Bonferroni approach relative to projection approaches
is not accidental. Second, the theoretical viewpoint suggested an improved band, the sup-t
band, which had not been exploited in a VAR context, despite being well known in other
areas of econometrics. Finally, we proposed a Bayesian version of the sup-t band, which may
be particularly attractive due to the prevalence of Bayesian procedures in VAR studies.

21We refrain from reporting the bootstrap and Bayes bands for the external instrument specification, as
no off-the-shelf Bayesian implementation currently exists (Caldara & Herbst, 2016, assume zt is white noise,
which is counterfactual in our application). Appendix A.5 plots pointwise, Šidák, Bonferroni, and projection
bands for the recursive specification.
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IRF confidence bands: recursive identification, sup-t implementations
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Figure 4: 68% confidence bands for the impulse response function of the EBP to a 1 standard
deviation contractionary monetary policy shock, recursive identification, different sup-t implemen-
tations. Thick line: point estimate. Thin lines: confidence bands.

Simulation study. Appendix A.5 contains a simulation study of the small-sample cover-
age probability and average width of the various simultaneous confidence bands for impulse
response functions. [To be completed.]

5.2 Sensitivity analysis in regression

Simultaneous confidence bands can be used to visualize the joint uncertainty of a linear
regression coefficient estimated using different sets of control variables. The simultaneous
nature of the band allows easy comparisons across the several different potential specifica-
tions, in contrast to the common approach of reporting confidence intervals separately for
each specification. While we have not seen the sup-t band used for this precise purpose
before, Berk et al. (2013) and Leeb et al. (2015) analyze the sup-t band as a means for
performing valid post-model-selection inference.22

[To be completed.]

22Several papers have considered the related issue of adjusting critical values to account for “data snoop-
ing”, e.g., Hansen & Timmermann (2012) and Armstrong & Kolesár (2016).
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6 Discussion and extensions

Our analysis provides analytical comparisons between popular simultaneous confidence bands
in a generally applicable nonlinear framework. The sup-t band emerges as a good default
choice, for three reasons. First, it dominates Šidák, Bonferroni, and projection strategies
asymptotically. Second, it uniquely minimizes worst-case regret among translation equiv-
ariant confidence bands when the researcher is unsure about the appropriate choice of loss
function, for example because different audience members have different parameters of in-
terest. Third, the sup-t band is usually quickly computable in its plug-in, bootstrap, or
Bayesian implementations. The Bayesian sup-t band is particularly attractive for finite-
sample Bayesian inference. If frequentist asymptotic coverage is desired, the plug-in sup-t
band is straight-forward to compute if the derivatives of h(·) are simple to evaluate; other-
wise, the bootstrap and Bayes implementations only require evaluation of h(·) itself.

Extension: generalized error rate control. In some applications it is desirable
to replace the simultaneous coverage requirement (1) with the requirement that the band Ĉ
should with probability 1− α cover at least k −m of the parameters, asymptotically:

lim inf
n→∞

P
(∑k

j=11(θj /∈ Ĉj) ≤ m
)
≥ 1− α,

which reduces to condition (1) for m = 0. The above condition is referred to as controlling
the generalized familywise error rate in the multiple testing literature (Romano et al., 2010,
section 8.2; Wolf & Wunderli, 2015). For example, in some applications of Bayesian impulse
response function analysis, it may be more useful to be 95% sure that the band contains the
true responses for at least 20 out of 25 horizons, rather than being 68% sure that the band
covers the true responses for all horizons.

It is straight-forward to modify the sup-t implementations in this paper to impose the
generalized error rate coverage constraint for a given m. Simply replace all instances of
the “max” operator with the (m + 1)-th order statistic. Similarly, for the quantile-based
bootstrap and Bayes bands, we replace the definition of ζ̂ in Algorithm 2 with

ζ̂ = sup

ζ ∈
[
α

2k ,
α

2

] ∣∣∣∣∣ 1
N

N∑
`=1

1

 k∑
j=1

1(θ̂(`)
j /∈ [Q̂j,ζ , Q̂j,1−ζ ]) ≤ m

 ≥ 1− α

 .
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Future research directions. Our analysis focused on the case of point identification.
More research is needed on partially identified applications where confidence bands are of
interest, such as VAR analysis under sign restrictions. The results of this paper remain useful
for inference on point identified features of the identified set.23 Moreover, the Bayesian sup-t
band may be used for subjective Bayesian analysis even under partial identification.24

It would be useful to further investigate the small-sample properties of the sup-t band.
Intuitively, the accuracy of the sup-t band will depend on (i) how well n−1Σ̂ estimates
the variance of θ̂, and (ii) how close the distribution of maxj Σ̂−1/2

jj

√
n|θ̂j − θj| is to the

distribution of a maximum of absolute values of correlated normal variables. When k =
dim(θ) is large, it may be possible to improve on the plug-in estimator of Σ̂ using shrinkage.
Furthermore, asymptotics as k →∞ for the maximum t-statistic—as used in the Gaussian
process literature—may yield higher-order refinements of the fixed-k limit theory.

We assumed smoothness of the transformation h(·) mapping underlying model parame-
ters into parameters of interest. In highly nonlinear problems, it is possible that the delta
method linearization of h(·) used in this paper is an unreliable guide to finite-sample per-
formance. In such cases, alternative asymptotic sequences that do not imply asymptotic
linearity may yield more useful results (e.g., Andrews & Mikusheva, 2016). In applications
where continuous differentiability of h(·) fails entirely at economically plausible parameter
values, our limit theory must be appropriately modified (e.g., Kitagawa et al., 2016).

23E.g., the largest VAR impulse responses in the identified set at certain horizons (Giacomini & Kitagawa,
2015; Gafarov et al., 2016), as long as the continuous differentiability assumption is satisfied.

24Baumeister & Hamilton (2016) make this argument for the pointwise credible band.
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A Supplementary results

A.1 Details of confidence bands in the one-parameter class

Here we provide additional details on some of the bands in the one-parameter class.

Bonferroni. The Bonferroni band is obtained by applying a Bonferroni multiple com-
parisons adjustment to the pointwise critical value. Bonferroni adjustments that are not
symmetric across the elements j = 1, . . . , k are also possible, but here we stay within our
one-parameter class. Standard arguments (e.g., Alt, 1982) show that the Bonferroni band
has asymptotic simultaneous coverage probability strictly greater than 1−α if k > 1, under
Assumption 1.

Šidák. The Šidák band can be seen as that value of c which would yield asymptotic
simultaneous coverage of exactly 1 − α in the special case where the elements θ̂j of θ̂ are
uncorrelated. The famous Šidák (1967) theorem shows that the independent case is “least
favorable” for the coverage probability of the multivariate normal distribution. Hence, under
Assumption 1, the Šidák band guarantees asymptotic simultaneous coverage of at least 1−α
regardless of the true correlation structure, but it will typically be conservative.25

θ-projection. A well-known strategy for building a confidence band for θ is to find the
smallest rectangle that contains the Wald ellipse for θ. If the consistent estimator Σ̂ =
ḣ(µ̂)Ω̂ḣ(µ̂)′ of Σ is nonsingular, we can define the Wald ellipse for θ:

Ŵθ ≡
{
θ̃ ∈ Rk

∣∣∣ n(θ̂ − θ̃)′Σ̂−1(θ̂ − θ̃) ≤ χ2
k,1−α

}
.

Consider the smallest rectangle that contains this ellipse:

Ĉθ-proj ≡
k×
j=1

[
inf

θ̃∈Ŵθ
θ̃j, sup

θ̃∈Ŵθ
θ̃j
]
.

Since Ŵθ ⊂ Ĉθ-proj, this θ-projection confidence band automatically has asymptotic simul-
taneous coverage probability at least 1 − α under Assumption 1 and provided that Σ is
nonsingular. The band is conservative if k ≥ 2. Straight-forward algebra shows that the

25This argument of course relies crucially on asymptotic normality, unlike the Bonferroni adjustment.
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θ-projection band is equal to the band B̂(χk,1−α) in the one-parameter class.26

µ-projection. The following result states that the µ-projection band defined in Sec-
tion 2.2 lies in the one-parameter class, up to asymptotically negligible terms.

Proposition 2. Under Assumption 1 and positive definiteness of Ω, the µ-projection band
equals B̂(χp,1−α) up to terms of order op(n−1/2):

Ĉµ-proj =
k×
j=1

[
θ̂j − σ̂jχp,1−α + op(n−1/2), θ̂j + σ̂jχp,1−α + op(n−1/2)

]
.

Bootstrap versions. Many bootstrap variants of the bands in the one-parameter class
are possible. Lemma 1 implies that if a band has edges that are within asymptotic order
op(n−1/2) of a one-parameter band B̂(c), then those two bands are equivalent for our purposes:
the asymptotic coverage probability is identical, and the ratio of the widths of the component
intervals tends to 1 in probability. For example, our analysis covers confidence bands obtained
by bootstrapping the standard errors σ̂j instead of using plug-in delta method estimates.

A.2 Comparison of critical values

Here we provide additional analytical and graphical results comparing the critical values
listed in Table 1, cf. Section 2.3. Most of these results are well known in the multiple
comparisons literature, but it is useful to state them in terms of our notation.

The following lemma states that the pointwise critical value and the Šidák critical value
provide extreme bounds on the sup-t critical value q1−α(Σ), cf. Definition 2. These bounds
are sharp if k ≤ p, in which case a more precise expression for the sup-t critical value would
need to rely on the specific correlation structure of θ̂. Dunn (1958, 1959) conjectured a
version of this statement, since proven by Šidák (1967).

Lemma 3. Define

Sp,k ≡
{

Σ̃ ∈ Rk×k
∣∣∣ Σ̃ symmetric positive semidefinite, rank(Σ̃) ≤ p, Σ̃jj > 0 for all j

}
.

26Simply maximize/minimize θ̃j subject to the quadratic constraint n(θ̂− θ̃)′Σ̂−1(θ̂− θ̃) ≤ χ2
k,1−α, noting

that the j-th diagonal element of Σ̂/n is σ̂2
j . This result does not rely on the specific critical value χ2

k,1−α
in the definition of the Wald ellipse for θ. Hence, the rectangular envelope of the Inoue & Kilian (2016)
procedure for constructing confidence bands for VAR impulse response functions also falls within the one-
parameter class, although with a non-standard critical value.
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For all ζ ∈ (0, 1),
inf

Σ̃∈Sp,k
qζ(Σ̃) = χζ , sup

Σ̃∈Sp,k
qζ(Σ̃) ≤ χζ1/k .

The inequality for the supremum is an equality if k ≤ p.

Lemma 3 provides sharp bounds on the sup-t critical value when k ≤ p. The following
lemma provides a slightly more informative upper bound in the case k > p. It states that
the sup-t critical value is also upper-bounded by the µ-projection critical value, although
this bound is not sharp if k > p ≥ 2.

Lemma 4. Using the same notation as Lemma 3, we have for all ζ ∈ (0, 1),

sup
Σ̃∈Sp,k

qζ(Σ̃) ≤ min
{
χζ1/k , χp,ζ

}
.

If k > p ≥ 2 and ζ ∈ (0, 1), then

χζ1/p < sup
Σ̃∈Sp,k

qζ(Σ̃) < χp,ζ .

The next lemma provides analytical results to complement the visual observations in
Figure 2 about the pointwise, Šidák, Bonferroni, and θ-projection critical values. It shows
that (i) the Bonferroni critical value always exceeds Šidák, (ii) the θ-projection critical value
always exceeds Šidák, and (iii) the Šidák critical value grows at rate

√
log k in k. These

results are well known in the multiple comparisons literature.

Lemma 5. (i) χ1−α/k > χ(1−α)1/k for all α ∈ (0, 1) and k ≥ 2.

(ii) χk,1−α > χ(1−α)1/k for all α ∈ (0, 1) and k ≥ 2.

(iii) There exists ε > 0 such that, for all α ∈ (0, 1) and k ≥ 1,

ε
√

log k −
√
−2 log(1− α) ≤ χ(1−α)1/k ≤

√
2 log 2k +

√
−2 logα.

Figure 5 compares the Šidák and µ-projection critical values. In Section 2.3 we argued
that Šidák and Bonferroni bands are both narrower than µ-projection if α < 0.5 and k ≤ p.
What if k > p? The figure shows the smallest value of k needed for the µ-projection band
to be asymptotically weakly narrower than Šidák. Clearly, for this to happen at usual
significance levels, either the model dimension p must be very small, or the number k of
parameters of interest must be in the 1,000s.
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Comparison of Šidák and µ-projection critical values
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Figure 5: Smallest value of k needed for the Šidák band to be asymptotically weakly wider than
the µ-projection band, as a function of p. Horizontal axis: p, vertical axis: k in log scale. The
curves correspond to significance levels α = 0.05 (black), α = 0.1 (red), and α = 0.32 (blue).

A.3 Details of Gaussian decision problem

The argument for invariance of the decision problem in Section 3 is standard and we sketch
it here for the sake of exposition. See Berger (1985, section 6.2.2) for a definition of invariant
decision problems. Let T ≡ {fλ(x) = x + λ | λ ∈ Rp} denote the group of translations of
the data X by arbitrary vectors λ ∈ Rp. First, we note that the Gaussian statistical model
(3) is invariant under T . Second, for any data transformation fλ ∈ T and any action C =
×k

j=1[aj, bj] ∈ R, the alternative action given by C̃ ≡ Gλ+C =×k
j=1[g′jλ+aj, g

′
jλ+ bj] ∈ R

(where g′j is the j-th row of G) satisfies 1{Gµ ∈ C} = 1{G(λ + µ) ∈ C̃} and L(C) = L(C̃)
for all µ ∈ Rp.

A.4 Details of implementation of sup-t band

Here we discuss an alternative bootstrap procedure, and we state formal results guaranteeing
the validity of the plug-in, bootstrap, and Bayesian bands discussed in Section 4.
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Alternative bootstrap procedure. Algorithm 3 defines an alternative critical-value-
based bootstrap band. The procedure first computes the standard deviation σ̂∗j of the boot-
strap draws of θ̂j, for each j. It then computes a bootstrap approximation q̂1−α to the sup-t
critical value q1−α(Σ). Finally, the band is given by B̂(q̂1−α), except that the bootstrap stan-
dard errors σ̂∗j are used in place of the delta method standard errors σ̂j. Thus, Algorithm 3
does not require evaluation of the partial derivatives of h(·). Unlike the quantile-based boot-
strap band, the critical-value-based band is symmetric around the point estimate θ̂ in any
finite sample. Proposition 3 below shows that the critical-value-based band is asymptotically
equivalent with the sup-t band B̂(q1−α(Σ)) if the bootstrap for µ̂ is valid and the bootstrap
standard errors σ̂∗j are consistent.

Algorithm 3 Critical-value-based bootstrap band
1: Let P̂ be the bootstrap distribution of µ̂
2: Draw N samples µ̂(1), . . . , µ̂(N) from P̂

3: for ` = 1, . . . , N do
4: θ̂(`) = h(µ̂(`))
5: end for
6: for j = 1, . . . , k do
7: Compute the empirical standard deviation σ̂∗j of draws θ̂(1)

j , . . . , θ̂
(N)
j

8: end for
9: for ` = 1, . . . , N do
10: m̂(`) = maxj=1,...,k

|θ̂(`)
j −θ̂j |
σ̂∗j

11: end for
12: Let q̂1−α be the 1− α empirical quantile of the draws m̂(1), . . . , m̂(N)

13: Ĉ =×k
j=1[θ̂j − σ̂∗j q̂1−α, θ̂j + σ̂∗j q̂1−α]

The critical-value-based bootstrap band is finite-sample equivalent (up to minor nu-
merical details) with the bootstrap-adjusted Bonferroni or projection (“Wald”) bands of
Lütkepohl et al. (2015a,b). Lütkepohl et al. view their approach as a method for adjusting
downward the critical values used in the Bonferroni or projection approaches, in order to
mitigate the conservativeness of the original bands. As our Algorithm 3 makes clear, the
“bootstrap-adjusted” procedure is best thought of as a direct bootstrap implementation of
the sup-t band. This interpretation is useful from a practical perspective: The purpose of
the bootstrap is to deliver good approximations of the bootstrap standard errors and the
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bootstrapped sup-t quantile, so the bootstrap procedure—including the number of bootstrap
draws—should be designed with these goals in mind.

In principle, Algorithm 3 could also be used to construct a Bayesian band with simulta-
neous credibility 1− α. However, since the algorithm is based on t-statistics, it appears less
well motivated from a finite-sample Bayesian perspective, except perhaps in cases where the
posterior distribution is exactly Gaussian (as in Liu, 2011, chapter 2.9).

Theoretical results. First we state the easy result that the sup-t critical value is a
continuous function of the (possibly singular) variance-covariance matrix Σ. This result then
implies the validity of the plug-in implementation of the sup-t band.

Lemma 6. For any ζ ∈ (0, 1), the function Σ̃ 7→ qζ(Σ̃) in Definition 2 is continuous on the
set Sp,k defined in Lemma 3.

Next, we state a result guaranteeing that the bootstrap and Bayesian implementations
of the sup-t band in Section 4 deliver bands with frequentist asymptotic validity. In the
proposition, the auxiliary random variable µ̂∗ should be thought of as a bootstrap draw of
µ̂ or a draw from the posterior of µ.

Proposition 3. Let Assumption 1 hold. Let µ̂∗ ∈ Rp be a random vector whose distribu-
tion conditional on the data is denoted P̂ . Let P̂M denote the distribution of

√
n(µ̂∗ − µ),

conditional on the data. Let PM denote the distribution Np(0p,Ω). Assume

ρ(P̂M , PM) p→ 0 as n→∞,

where ρ(·, ·) denotes the Bounded Lipschitz metric or any other metric that metrizes weak
convergence of probability measures on Rp.

(i) Assume for each j = 1, . . . , k, there exists a random variable σ̂∗j such that
√
nσ̂∗j

p→ Σ1/2
jj .

Let q̂1−α denote the 1 − α quantile of the distribution of maxj(σ̂∗j )−1|hj(µ̂∗) − hj(µ̂)|,
conditional on the data (and thus also conditional on the σ̂∗j ). Then

q̂1−α
p→ q1−α(Σ).

(ii) Denote the ζ quantile of hj(µ̂∗), conditional on the data, by Q̂j,ζ. Define ζ̂ as the largest
value of ζ ∈ [0, 1/2] such that P̂ (h(µ̂∗) ∈ ×k

j=1[Q̂j,ζ , Q̂j,1−ζ ]) ≥ 1 − α, conditional on
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the data. Let Φ(·) denote the standard normal CDF. Then

ζ̂
p→ ζ∗ ≡ Φ(−q1−α(Σ)).

(iii) Under the same conditions as in (ii), we have, for any j = 1, . . . , k,

Q̂j,ζ̂ = θ̂j − σ̂jq1−α(Σ) + op(n−1/2),

Q̂j,1−ζ̂ = θ̂j + σ̂jq1−α(Σ) + op(n−1/2).

A.5 Details of VAR confidence bands

In this section we review the literature on confidence bands for impulse response functions,
give additional details of the VAR application, and present a simulation study of the VAR
confidence band procedures.

Literature review. Here we briefly review the literature on confidence bands for im-
pulse response functions, as well as the closely related literature that constructs confidence
bands for path forecasts.27 Hymans (1968) constructs path forecast bands using θ-projection.
Sims & Zha (1999) propose a procedure for plotting the principal components decomposition
of the variance-covariance matrix, although this does not lead to a confidence band in the
sense of this paper. Lütkepohl (2005, pp. 115–116) recommends the Bonferroni band. Jordà
(2009) and Jordà & Marcellino (2010) develop projection-like confidence bands which control
the “Wald coverage”, in the terminology of Jordà et al. (2013); however, these bands do not
control simultaneous coverage in the usual sense of equation (1) (cf. Wolf & Wunderli, 2015,
section 3.3). Lütkepohl et al. (2015a,b) propose bootstrap adjustments of the Bonferroni,
µ-projection, and θ-projection procedures to make these less conservative; the adjusted pro-
cedures are essentially equivalent with the bootstrap sup-t band in Appendix A.4. Wolf &
Wunderli (2015) use a bootstrap sup-t band to construct confidence bands for path forecasts
(but not VAR impulse responses). Inoue & Kilian (2016) summarize estimation uncertainty
for impulse responses using “shotgun plots”, i.e., random samples from a bootstrapped confi-
dence ellipsoid.28 Lütkepohl et al. (2016) construct highest-density rectangular regions from

27The two problems are equivalent (only) in Gaussian time series models (Wolf & Wunderli, 2015, p. 361).
28This deliberately does not generate a rectangular confidence region. The smallest rectangular region

containing the Inoue & Kilian (2016) confidence ellipsoid equals the θ-projection confidence band, using the
bootstrapped critical value and standard errors.
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bootstrap draws of the impulse responses, which is asymptotically equivalent to θ-projection
under the regularity conditions in Section 4.

VAR model and impulse responses. The VAR model assumes that the d-dimensional
vector yt = (y1,t, . . . , yd,t)′ of observed time series is driven in an autoregressive manner by a
d-dimensional vector εt = (ε1,t, . . . , εd,t)′ of unobserved economic shocks:

yt = ν +
τ∑
`=1

A`yt−` +Hεt, t = 1, 2, . . . , T.

The intercept vector ν is d× 1, while the lag coefficient matrices A` and the impact matrix
H are each d × d. The VAR lag length τ is assumed finite here. The shocks are a strictly
stationary martingale difference sequence with identity variance-covariance matrix:

E[εt | εt−1, εt−2, . . . ] = 0d, Var(εt) = Id.

The identified model parameters are µ ≡ (ν ′, vec(A1)′, . . . , vec(Aτ )′, vech(Ψ)′)′, where Ψ ≡
HH ′ is the one-step forecast error variance-covariance matrix.

The impulse response matrix at horizon ` is given by Θ` ≡ ∂yt+`/∂ε
′
t. It can be computed

by the recursion

Θ0 = H, Θ` =
min{`,τ}∑
b=1

AbΘ`−b, ` = 1, 2, . . .

We are interested in the impulse response function of the first observed variable to the first
shock, from horizon 0 to k − 1: θ ≡ (Θ0,11,Θ1,11, . . . ,Θk−1,11)′, where Θ`,11 denotes the
(1, 1) element of Θ`. Since H is only identified up to Ψ = HH ′, θ is not identified without
further assumptions (Stock & Watson, 2016). We may point identify θ by imposing exclusion
restrictions on H or on Θ` for various ` (or as `→∞). Alternatively, we may assume that
an external instrument zt is available and satisfies E[ztε1,t] 6= 0 and E[ztεi,t] = 0 for i ≥ 2
(Stock & Watson, 2012; Mertens & Ravn, 2013). However point identification is achieved,
there exists a function h(·) such that θ = h(µ).29 This function is nonlinear and typically
continuously differentiable (Lütkepohl, 2005, chapter 3.7). Lütkepohl (2005) and Kilian &
Lütkepohl (2017) review limit theory for the least-squares estimator µ̂, bootstrap methods,
and posterior sampling in VARs.30

29In the case of the external instrument, we augment the vector µ by the parameter vector γ = E[(Yt −
E[Yt | Yt−1, . . . , Yt−τ ])zt] (Montiel Olea et al., 2016).

30In cointegrated models as well as certain stationary models, the asymptotic variance Ω of µ̂ may be
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Details of empirical implementation. To simplify comparisons with the bootstrap
and Bayes procedures, the asymptotic variance of the VAR estimator µ̂ is calculated under
the assumption of homoskedastic shocks εt. However, any of our procedures can be extended
to allow for heteroskedasticity using standard methods.

The bootstrap is a homoskedastic recursive residual bootstrap. We use 10,000 bootstrap
draws. For Bayesian inference we use a maximally diffuse normal-inverse-Wishart prior,
and we sample from the posterior using its closed-form expression under Gaussian shocks
(Uhlig, 2005, Appendix B). We use 10,000 posterior draws. The bootstrap and Bayesian
procedures treat pre-sample observations of yt as fixed. The plug-in sup-t quantile q1−α(Σ̂)
is approximated using 100,000 normal draws. We adjust for the fact that the sample for
the external instrument is smaller than the sample for the VAR variables: The variance-
covariance matrix for the VAR least-squares estimator is computed on the larger sample
and then stitched together with the remaining variance-covariance on the smaller sample. It
takes less than 3 minutes to compute all bands reported in Section 5.1, using Matlab R2016b
on a personal laptop (2.60 GHz processor, single core, 8 GB RAM).

Additional empirical results. Figures 6 and 7 compare all common bands in the
one-parameter class for the recursive and external instrument specifications, including θ-
projection and µ-projection. Evidently, both projection bands are substantially wider than
the sup-t, Šidák, and Bonferroni bands, as theory predicts. The µ-projection band is wider
than the θ-projection band since p > k.

Simulation study. [To be completed.]

singular. Our theory and methods allow for singularities.
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IRF confidence bands: IV identification, with projection
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Figure 6: 68% confidence bands for IRF of EBP to 1-stdev contractionary monetary policy shock,
external instrument identification. See caption for Figure 3.

IRF confidence bands: recursive identification, with projection
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Figure 7: 68% confidence bands for IRF of EBP to 1-stdev contractionary monetary policy shock,
recursive identification. See caption for Figure 3.
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B Proofs

B.1 Lemma 1

For each j = 1, . . . , k, define d̂j ≡ b̂j−âj
2 and êj ≡

√
n(âj+b̂j)

2c . Note that d̂ = (d̂1, . . . , d̂k)′ =
op(n−1/2) and ê = (ê1, . . . , êk)′ = op(1). Define also σ̂ ≡ (σ̂1, . . . , σ̂k)′. For any vector x ∈ Rk,
let diag(x) denote the k × k diagonal matrix with the elements of x in order along the
diagonal. Then, for any c > 0,

P
(
θ ∈ B̂(c)

)
= P

(
‖ diag(

√
nσ̂ + ê)−1√n(θ̂ − θ + d̂)‖∞ ≤ c

)
= P

(
‖ diag(

√
nσ̂ + op(1))−1(

√
n(θ̂ − θ) + op(1))‖∞ ≤ c

)
.

The proposition now follows from the limiting distribution (2) of θ̂, the continuous mapping
theorem, and the Portmanteau lemma. To apply the latter, we need to show that the
probability measure of maxj |Σ−1/2

jj Vj|, where V ∼ Nk(0k,Σ), is dominated by Lebesgue
measure. This follows from the fact that P (maxj=1,...,kXj ∈ A) ≤ ∑k

j=1 P (Xj ∈ A) = 0 for
any collection {Xj}j=1,...,k of scalar random variables and any Lebesgue null set A.

B.2 Lemma 2

If C ∈ Ceq, then C(x+ λ) = Gλ+ C(x) for any x, λ ∈ Rp. Hence, for any x ∈ Rp,

C(x) = C(0p + x) = Gx+ C(0p).

The lemma follows by setting R = C(0p) ∈ R.

B.3 Lemma 3

Given any Σ̃ ∈ Sp,k, if we let Ṽ = (Ṽ1, . . . , Ṽk)′ ∼ Nk(0k, Σ̃), then

ζ = P
(

max
j
|Σ̃−1/2

jj Ṽj| ≤ qζ(Σ̃)
)
≤ P (|Σ̃−1/2

11 Ṽ1| ≤ qζ(Σ̃)) = P (χ2(1) ≤ q2
ζ (Σ̃)),

so
inf

Σ̃∈Sp,k
q2
ζ (Σ̃) ≥ χ2

ζ .
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On the other hand, let G∗ ≡ (g∗, . . . , g∗)′ ∈ Rk×p, where g∗ ∈ Rp is any vector satisfying
‖g∗‖ = 1, and define Σ∗ ≡ G∗(G∗)′ ∈ Sp,k. Note that Σ∗jj = 1 for all j. Then

inf
Σ̃∈Sp,k

qζ(Σ̃) ≤ qζ(Σ∗) = χζ ,

since
ζ = P (|(g∗)′Z| ≤ χζ) = P (‖G∗Z‖∞ ≤ χζ) = P (‖Nk(0k,Σ∗)‖∞ ≤ χζ).

The inequality for the supremum in the lemma is the famous Šidák (1967) inequality. Finally,
if k ≤ p, then Ik ∈ Sp,k, so supΣ̃∈Sp,k qζ(Σ̃) ≥ qζ(Ik) = χζ1/k .

B.4 Lemma 4

Given Σ̃ ∈ Sp,k and Ṽ ∼ Nk(0k, Σ̃), we can write Ṽ ∼ G̃Z, where Z ∼ Np(0p, Ip), and
G̃ = (g̃1, . . . , g̃k)′ satisfies G̃G̃′ = Σ̃ and thus ‖g̃j‖2 = Σ̃jj for all j. Hence, the first statement
of the lemma (a standard projection result) follows from Lemma 3 and

max
j
|Σ̃−1/2

jj Ṽj| = max
j
‖g̃j‖−1|g̃′jZ| ≤ max

j
‖g̃j‖−1‖g̃j‖‖Z‖ = ‖Z‖ ∼

√
χ2(p).

Now consider the second statement. That the supremum is strictly smaller than χp,ζ follows
from the above display and the fact that the event {Z ∝ g̃j} has probability zero for any
vector g̃j ∈ Rp (when p ≥ 2). To show the strict lower bound on the supremum, consider the
particular k×p matrix G∗ ≡ (Ip, ι/

√
p, . . . , ι/

√
p)′, where ι ≡ (1, . . . , 1)′. Then Σ∗ ≡ G∗(G∗)′

satisfies Σ∗jj = 1 for all j. If we let Z ∼ Np(0p, Ip), then

P (‖Nk(0k,Σ∗)‖∞ ≤ χζ1/p) = P (‖G∗Z‖∞ ≤ χζ1/p)

= P (‖Z‖∞ ≤ χζ1/p)P
(
|ι′Z|/√p ≤ χζ1/p

∣∣∣ ‖Z‖∞ ≤ χζ1/p

)
= ζ

{
1− P

(
|ι′Z| > √pχζ1/p

∣∣∣ ‖Z‖∞ ≤ χζ1/p

)}
.

The lemma follows if we show that

P
(
|ι′Z| > √pχζ1/p , ‖Z‖∞ ≤ χζ1/p

)
> 0.

Let ε > 0 satisfy p(χζ1/p − ε) > √pχζ1/p ; such an ε exists because p ≥ 2. Then

P
(
|ι′Z| > √pχζ1/p , ‖Z‖∞ ≤ χζ1/p

)
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≥ P
(
|ι′Z| > √pχζ1/p , ‖Z‖∞ ≤ χζ1/p , min

j
Zj ≥ χζ1/p − ε

)
≥ P

(
p(χζ1/p − ε) >

√
pχζ1/p , ‖Z‖∞ ≤ χζ1/p , min

j
Zj ≥ χζ1/p − ε

)
= P

(
‖Z‖∞ ≤ χζ1/p , min

j
Zj ≥ χζ1/p − ε

)
> 0.

B.5 Lemma 5

Let U = (U1, . . . , Uk)′ ∼ Nk(0k, Ik).

(i): The statement is equivalent with log(1−( 1
k
α+ k−1

k
×0)) > 1

k
log(1−α)+ k−1

k
log(1−0).

This is Jensen’s inequality applied to the concave function x 7→ log(1− x).

(ii): This standard projection bias result follows from ‖U‖2
∞ ≤ ‖U‖2 ∼ χ2(k). Note that

χ2
(1−α)1/k is the 1− α quantile of ‖U‖2

∞.

(iii): By Giné & Nickl (2016, Lemmas 2.3.4 and 2.4.11), there exists ε > 0 such that

ε
√

log k ≤ E‖U‖∞ ≤
√

2 log 2k.

Hence, using Giné & Nickl (2016, Theorem 2.5.8),

P
(
‖U‖∞ ≥

√
2 log 2k +

√
−2 logα

)
≤ P

(
‖U‖∞ ≥ E‖U‖∞ +

√
−2 logα

)
≤ α,

so χ(1−α)1/k ≤
√

2 log 2k +
√
−2 logα. Similarly, Giné & Nickl (2016, Theorem 2.5.8) yields

P
(
‖U‖∞ ≤ ε

√
log k −

√
−2 log(1− α)

)
≤ P

(
‖U‖∞ ≤ E‖U‖∞ −

√
−2 log(1− α)

)
≤ 1− α,

so χ(1−α)1/k ≥ ε
√

log k −
√
−2 log(1− α).

B.6 Lemma 6

Let Σ̃ ∈ Sp,k. We want to show qζ(Σ̃(`)) → qζ(Σ̃) as ` → ∞ for any sequence {Σ̃(`)} ∈ Sp,k
tending to Σ̃ as `→∞.
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First we argue that the distribution Nk(0k, Σ̃(`)) converges weakly to Nk(0k, Σ̃) as `→∞.
This statement is obvious if k = 1. It then follows for general k by the Cramér-Wold device.

Now let Ṽ ∼ Nk(0k, Σ̃) as well as Ṽ (`) ∼ Nk(0k, Σ̃(`)) for all `. By the continuous
mapping theorem, Σ̃jj > 0, and the above paragraph, the distribution of maxj |(Σ̃(`)

jj )−1/2Ṽ
(`)
jj |

converges weakly to the distribution maxj |Σ̃−1/2
jj Ṽjj| as `→∞.

The statement of the lemma now follows from van der Vaart (1998, Lemma 21.2) if we
show that the distribution of maxj |Σ̃−1/2

jj Ṽjj| is absolutely continuous on R+. Represent
this distribution as the distribution of ‖GZ‖∞ where G ∈ Rk×p and Z ∼ Np(0p, Ip). We
showed that the probability measure of ‖GZ‖∞ is dominated by Lebesgue measure in the
proof of Lemma 1. Now take an arbitrary non-empty interval (a, b), 0 ≤ a < b. Denote
elements of G by gj`. We may assume the first column of G is not identically zero. Select
j∗ ∈ argmaxj |gj1|. Let e1 denote the first p-dimensional unit vector. Then ‖Gz∗‖∞ = a+b

2

for z∗ ≡ a+b
2gj∗1

e1, so there exists a neighborhood S of z∗ in Rp such that ‖Gz‖∞ ∈ (a, b) for
all z ∈ S. Then P (‖GZ‖∞ ∈ (a, b)) > P (Z ∈ S) > 0.

B.7 Proposition 1

We need an auxiliary lemma. It states that the coordinate-wise width of any translation
equivariant confidence band of confidence level 1−α is bounded from below by the coordinate-
wise width of the band that has pointwise confidence level 1− α. A similar result is stated
by Piegorsch (1984, p. 15). To remind the reader of our notation: Rj denotes the interval
[aj, bj] (where bj > aj) and R =×k

j=1Rj. Moreover, g′j is the j-th row of G ∈ Rk×p.

Lemma 7. Let C(x) = Gx+R ∈ C1−α ∩ Ceq. Then bj − aj ≥ 2‖gj‖χ1−α for j = 1, . . . , k.

Proof. Let Z ∼ Np(0p, Ip). For any j = 1, . . . , k,

Pµ(Gµ ∈ C(x)) = P (GZ ∈ R1 × · · · ×Rk)

(by the translation equivariance of C(x))

≤ P (g′jZ ∈ [aj, bj])

(by the monotonicity of probability)

≤ P (g′jZ ∈ [−(bj − aj)/2, (bj − aj)/2])

(by Anderson’s lemma)

= P ( |N1(0, 1)| ≤ (bj − aj)/(2‖gj‖)).
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Since C(x) has confidence level 1− α, we have that the right-hand side of the last equation
is greater than or equal 1− α. This can only happen if (bj − aj)/(2‖gj‖) ≥ χ1−α. Note that
the second inequality in the above display applies Anderson’s lemma.31

The proof of Proposition 1 proceeds in three steps.

Step 1: We first upper-bound the worst-case regret of the sup-t band. Define σ ≡
(‖g1‖, . . . , ‖gk‖)′. For any L ∈ LH , Lemma 7 implies that

L(Rsup)
infR̃∈R1−α

L(R̃)
≤ L(Rsup)

L(2σχ1−α)
(by Lemma 7 and the monotonicity of L)

= L(2σq1−α(GG′))
L(2σχ1−α)

(by definition of the sup-t band)

= 2q1−α(GG′)L(σ)
2χ1−αL(σ)

(by homogeneity of degree 1 of L)

= q1−α(GG′)
χ1−α

.

Consequently, Step 1 shows that the worst-case relative regret of the sup-t band is no larger
than the ratio of the sup-t critical value and the point-wise critical value:

sup
L∈LH

L(Rsup)
infR̃∈R1−α

L(R̃)
≤ q1−α(GG′)

χ1−α
.

Step 2: We now find a lower bound on the worst-case regret of an arbitrary rectangle
R = ×k

j=1Rj ∈ R1−α. Fix R and let j∗R ∈ argmaxj=1,...,k(bj − aj)/‖gj‖. Thus, j∗R is the
coordinate at which band R has the largest width relative to the pointwise standard error.
Consider now the loss function given by L∗R(r) ≡ rj∗R for all r = (r1, . . . , rk)′ ∈ Rk

+. We make
three observations: i) this loss function reports, for any vector (r1, r2, . . . , rk)′, the width
corresponding to the j∗R-th entry; ii) L∗R ∈ LH ; and iii):

inf
R̃∈R1−α

L∗R(R̃) = 2‖gj∗R‖χ1−α,

31https://en.wikipedia.org/wiki/Anderson%27s_theorem
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where the infimum is achieved by the sequence of bands that equal the Wald interval g′jx±
‖gj‖(χ1−α + εn) at coordinate j∗R (with εn → 0) and have interval endpoints tending to
plus/minus infinity at all other components. Thus, the worst-case relative regret of any
band R =×k

j=1[aj, bj] is bounded below by:

sup
L∈LH

L(R)
infR̃∈C1−α

L(R̃)
≥ L∗R(R)

infR̃∈R1−α
L∗R(R̃)

=
bj∗R − aj∗R

2‖gj∗R‖χ1−α
= 1

2χ1−α
max
j=1,...,k

bj − aj
‖gj‖

.

Step 3: Applying Step 2 toR = Rsup, the far right-hand side above equals q1−α(GG′)/χ1−α.
Therefore, Step 1 and 2 imply that

sup
L∈LH

L(Rsup)
infR̃∈R1−α

L(R̃)
= q1−α(GG′)

χ1−α
.

Hence, it now suffices to show that R = ×k
j=1[aj, bj] 6= Rsup implies maxj(bj − aj)/‖gj‖ >

2q1−α(GG′). Suppose to the contrary that there existed a rectangle R ∈ R1−α such that
bj − aj ≤ 2‖gj‖q1−α(GG′) for all j, with strict inequality for at least one j. This contradicts
the tautness of the sup-t band (Freyberger & Rai, 2017, Corollary 1). Hence, we conclude
that for, any R ∈ R1−α,

sup
L∈LH

L(R)
infR̃∈R1−α

L(R̃)
≥ q1−α(GG′)

χ1−α
,

with strict inequality for any R 6= Rsup.

B.8 Proposition 2

Fix j = 1, . . . , k. Continuous differentiability of h(·) at µ implies h(µ̃)− h(µ) = ḣj(µ)′(µ̃−
µ) + o(‖µ̃− µ‖) as ‖µ̃− µ‖ → 0. Hence, for any µ̃ ∈ Ŵµ,

hj(µ̃) = hj(µ̂) + hj(µ̃)− hj(µ)− [hj(µ̂)− hj(µ)]

= hj(µ̂) + ḣj(µ)′(µ̃− µ)− ḣj(µ)′(µ̂− µ) + o(‖µ̃− µ‖) + op(‖µ̂− µ‖)

= hj(µ̂) + ḣj(µ)′(µ̃− µ̂) + op(n−1/2) (uniformly in µ̃),
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where the last line uses ‖µ̂ − µ‖ = Op(n−1/2)—by Assumption 1(ii)—and ‖µ̃ − µ‖ ≤ ‖µ̂ −
µ‖+ ‖µ̂− µ̃‖ ≤ ‖µ̂− µ‖+ ‖Ω̂1/2‖‖Ω̂−1/2(µ̂− µ̃)‖ = Op(n−1/2) uniformly for µ̃ ∈ Ŵµ. Thus,

sup
µ̃∈Ŵµ

hj(µ̃) = hj(µ̂) + sup
µ̃∈Ŵµ

ḣj(µ)′(µ̃− µ̂) + op(n−1/2)

= hj(µ̂) + χp,1−α√
n
‖Ω̂1/2ḣj(µ)‖+ op(n−1/2)

= θ̂j + χp,1−ασ̂j + op(n−1/2).

The second equality above follows from the Cauchy-Schwarz inequality and the fact thatM
contains a neighborhood of µ, which implies P ({µ̃ ∈ Rp | ‖Ω̂−1/2(µ̃ − µ̂)‖ = χp,1−α/

√
n} ⊂

Ŵµ)→ 1. The result for the infimum follows by substituting −h(·) for h(·).

B.9 Proposition 3

(i): Let {n`} be an arbitrary subsequence of {n}. We need to show that there exists a
further subsequence along which q̂1−α

a.s.→ q1−α(Σ). By assumption, ρ(P̂M , PM) p→ 0 and
√
nσ̂∗j

p→ Σ1/2
jj (for all j) along the subsequence {n`}. Thus, we can extract a further subse-

quence {nm} of {n`} such that ρ(P̂M , PM) a.s.→ 0 and
√
nσ̂∗j

a.s.→ Σ1/2
jj (for all j) along {nm}.

All remaining asymptotic statements in the proof of part (i) are implicitly with respect to
this subsequence {nm}.

Since P̂M converges weakly to PM , almost surely, the continuous differentiability of h(·)
and the delta method imply that the conditional distribution of maxj(σ̂∗j )−1|hj(µ̂∗)− hj(µ̂)|
converges weakly to the distribution of maxj |Σ−1/2

jj Vj|, where V ∼ Nk(0k,Σ), almost surely.
Almost sure convergence of the 1− α quantile follows as in the proof of Lemma 6.

(ii): As above, given a subsequence of {n}, extract a further subsequence along which
ρ(P̂M , PM) a.s.→ 0 and

√
nσ̂j

a.s.→ Σ1/2
jj (for all j). We need to show

ζ̂
a.s.→ ζ∗ ≡ Φ(−q1−α(Σ))

along this latter subsequence. Except where noted, all asymptotic statements in the rest of
the proof are with respect to this subsequence.

For each j, let Q̂V
j,ζ denote the ζ quantile of the distribution of

√
n(hj(µ̂∗) − hj(µ̂)),

conditional on the data. By the monotone transformation preservation property of quantiles,
we have Q̂V

j,ζ =
√
n(Q̂j,ζ − θ̂j) for all j and ζ. Using a delta method argument as in part (i)
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above, the conditional distribution of
√
n(hj(µ̂∗)−hj(µ̂)) converges weakly to the distribution

of V ∼ Nk(0k,Σ), almost surely. Thus, Q̂V
j,ζ

a.s.→ Σ1/2
jj Φ−1(ζ), almost surely, for any j and ζ.

We first show lim inf ζ̂ ≥ ζ∗, almost surely. Suppose to the contrary that for some
ε > 0, we have ζ̂ < ζ∗ − ε along some (further) subsequence {ñ`}, with positive proba-
bility. Choose δ > 0 and α̃ ∈ (0, α) so that Σ1/2

jj Φ−1(ζ∗ − ε) + δ = −Σ1/2
jj q1−α̃(Σ). By

the argument in the previous paragraph, there exists an event E with probability 1 such
that Q̂V

j,ζ∗−ε < Σ1/2
jj Φ−1(ζ∗ − ε) + δ and Q̂V

j,1−(ζ∗−ε) > Σ1/2
jj Φ−1(1 − (ζ∗ − ε)) − δ for all

j, when sufficiently far along {ñ`}. Since ζ̂ is defined as the largest value of ζ such that
P̂ (h(µ̂∗) ∈ ×k

j=1[Q̂j,ζ , Q̂j,1−ζ ]) ≥ 1− α, we have that

ζ̂ < ζ∗ − ε

implies
P̂
(
h(µ̂∗) ∈ ×k

j=1[Q̂j,ζ∗−ε, Q̂j,1−(ζ∗−ε)]
)
< 1− α,

which is equivalent with

P̂
(√

n(h(µ̂∗)− h(µ̂)) ∈ ×k
j=1[Q̂V

j,ζ∗−ε, Q̂
V
j,1−(ζ∗−ε)]

)
< 1− α,

which on the event E further implies

P̂
(√

n(h(µ̂∗)− h(µ̂)) ∈ ×k
j=1[Σ1/2

jj Φ−1(ζ∗ − ε) + δ,Σ1/2
jj Φ−1(1− (ζ∗ − ε))− δ]

)
< 1− α

when sufficiently far along {ñ`}, or equivalently,

P̂
(√

n(h(µ̂∗)− h(µ̂)) ∈ ×k
j=1[−Σ1/2

jj q1−α̃(Σ),Σ1/2
jj q1−α̃(Σ)]

)
< 1− α,

or equivalently

P̂
(

max
j

Σ−1/2
jj

√
n|hj(µ̂∗)− hj(µ̂)| ≤ q1−α̃(Σ)

)
< 1− α,

or equivalently

P̂
(

max
j

Σ−1/2
jj

√
n|hj(µ̂∗)− hj(µ̂)| ≤ q1−α̃(Σ)

)
− (1− α̃) < α̃− α.

However, while the right-hand side above is strictly negative, the left-hand side tends to zero
along {ñ`} almost surely by the above-mentioned weak convergence of

√
n(hj(µ̂∗)− hj(µ̂)),
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the continuous mapping theorem, and Definition 2. We have arrived at a contradiction, and
thus conclude that lim inf ζ̂ ≥ ζ∗ almost surely.

We similarly show that lim sup ζ̂ ≤ ζ∗, almost surely. Suppose to the contrary that
for some ε > 0, we have ζ̂ > ζ∗ + ε along some (further) subsequence {ñ`}, with positive
probability. By monotonicity of quantiles in ζ,

ζ̂ > ζ∗ + ε and P̂
(
h(µ̂∗) ∈ ×k

j=1[Q̂j,ζ̂ , Q̂j,1−ζ̂ ]
)
≥ 1− α

imply
P̂
(
h(µ̂∗) ∈ ×k

j=1[Q̂j,ζ∗+ε, Q̂j,1−(ζ∗+ε)]
)
≥ 1− α.

We can now apply analogous arguments to the previous paragraph to ultimately show that
the event that the above inequality holds along {ñ`} must have probability zero.

(iii): Continue with the subsequence chosen at the beginning of part (ii). It suffices to
show that

√
n(Q̂j,ζ̂ − θ̂j)

a.s.→ −Σ1/2
jj q1−α(Σ) (6)

along this subsequence (the argument for Q̂j,1−ζ̂ follows the same way).
Let ε > 0 be arbitrary. Let δ > 0 satisfy Φ−1(ζ∗ + δ) − Φ−1(ζ∗ − δ) = Σ−1/2

jj ε/2. Part
(ii) implies |ζ̂ − ζ∗| < δ and Q̂V

j,ζ∗+δ > Σ1/2
jj Φ−1(ζ∗) > Q̂V

j,ζ∗−δ when sufficiently far along the
subsequence, almost surely. Thus,

∣∣∣√n(Q̂j,ζ̂ − θ̂j) + Σ1/2
jj q1−α(Σ)

∣∣∣
=
∣∣∣Q̂V

j,ζ̂
− Σ1/2

jj Φ−1(ζ∗)
∣∣∣

≤
(
Q̂V
j,ζ∗+δ − Σ1/2

jj Φ−1(ζ∗)
)

+
(
Σ1/2
jj Φ−1(ζ∗)− Q̂V

j,ζ∗−δ

)
=
(
Q̂V
j,ζ∗+δ − Σ1/2

jj Φ−1(ζ∗ + δ)
)

+
(
Σ1/2
jj Φ−1(ζ∗ − δ)− Q̂V

j,ζ∗−δ

)
+ Σ1/2

jj

(
Φ−1(ζ∗ + δ)− Φ−1(ζ∗ − δ)

)
=
(
Q̂V
j,ζ∗+δ − Σ1/2

jj Φ−1(ζ∗ + δ)
)

+
(
Σ1/2
jj Φ−1(ζ∗ − δ)− Q̂V

j,ζ∗−δ

)
+ ε

2 ,

when sufficiently far along the subsequence, almost surely (the inequality above uses mono-
tonicity of quantiles in ζ). By the argument in part (ii), the far right-hand side of the above
display is less than ε when sufficiently far along the subsequence, almost surely. Since ε > 0
was arbitrary, we have shown (6).
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